Vrije

unversicerr Literature study:
"=t the TriMedia, C6000, SODAand Dominguer

EVP processor architectures Ward Van Heddeghem
December 19, 2008

Advanced Computer
Architecture

¥

1 Introduction

This report describes and compares the micro-architectural aspects and ISA rationale of 4
processors:

* the TriMedia mediaprocessor (NXP, formerly Philips Semiconductor),
* the C6000 platform (Texas Instruments),

* the SODA architecture (University of Michigan)

* and the EVP (NXP).

These 4 processors can all be broadly categorized as application specific digital signal processors
(DSPs). The first two processors (Trimedia and TI's C6000) are targeted as media processors,
the latter two (SODA and EVP) are processors developed almost exclusively for Software
Defined Radio (SDR).

Media processors are typically found on DVD players, digital TV, IP TV, video security systems,
video editing systems, etc. SDR processors try to replace the RF processing hardware by
software, and are aimed mainly at consumer handheld devices such as PDAs, Smart Phones,
Mobile Phones etc.

2 General comparison of media and SDR processors

2.1 Multimedia Processing

Multimedia processing is the handling of video and audio data in electronic devices. This is
sometimes accomplished by specific purpose integrated circuits, but the lack of flexibility and
high cost of this approach has led to the development of multimedia processors, programmable
processors specially designed to efficiently execute all tasks related to multimedia processing.
Multimedia processors are typically found on DVD players, digital TV, IP TV, video security
systems, video editing systems, etc. [5]

The most common tasks for a multimedia processor arel10l:

* Image, video and audio decoding and encoding
* Image, video and audio compression

* Image, video and audio transmission

* Image, video and audio enhancement, filtering
¢ Pattern recognition

* Motion detection

Since multimedia processors are most often found on battery operated embedded devices and
since the nature of multimedia processing requires real time deadlines, the design choices in this
family of microprocessors aim to achieve high performance processing of multimedia data
streams with minimum power consumption and unit cost.[5

Multimedia processors achieve these goals by optimizing the execution of the multimedia tasks
mentioned above. This implies:

* High level of parallelism: VLIW, SIMD to boost performance and to allow for a low cost
silicon implementation.

* Large cache memories: To accommodate typically large images and video frames close to
the processor saving costly memory access and bandwidth.

* Penalty free un-aligned memory access: Processing algorithms typically access image
blocks in an un-aligned manner.

* Data pre-fetching: Multimedia processing algorithms access memory locations in
predictable strides and blocks.

* Large register files: Large data working sets can be kept in registers, preventing costly
load and store operations.

* DMA-style memory transfers: Increases overall system performance.

* Application specific instructions: Typical multimedia operations can be done in one or a
few clock cycles, saving energy and gaining performance.

* Small data words: 8 and 16-bit data words are typically sufficient for most multimedia
processing task. Limiting the size of data words allows for higher memory density and
parallelism.

TriMedia and TI C6000 are two competing families of multimedia microprocessors that in one
way or another implement the architectural design choices listed above.

2.2 Software-defined radio (SDR)

The physical layer of most wireless protocols is traditionally implemented in custom hardware to
satisfy the heavy computational requirements while keeping power consumption to a minimum.
These implementations are time consuming to design and difficult to verify. A programmable
hardware platform capable of supporting software implementations of the physical layer, or
software-defined radio (SDR), has a number of advantages: support for multiple protocols (i.e.
multimode operation), faster time-to-market, higher chip volumes, and support for late
implementation changes. SDR can be considered as a high-end digital signal processing (DSP)
application. [13]

The digital baseband processing for SDR can be divided into three stages: filter stage, modem
stage, and codec stage.

* The filter stage requires a high computational load and its implementation is uniform
between different standards and algorithms, a programmable solution would not be the most
efficient one.

* The modem stage is diverse among different standards, in this stage there is plenty of space
for different vendors to differentiate their products by applying different algorithms and
standards. This stage is ideal for a fully programmable solution.

* The codec stage is implemented by similar algorithms across several standards making a
programmable solution not desirable. [17]

The modem stage of digital baseband processing is an ideal application for a programmable SDR
processor. SODA and EVP are two such processors.

The main design goals of these SDR processors are typically high performance (imposed by the
high throughput requirements of current wireless protocols), energy efficiency (battery operated
devices) and programmability (multi-protocol support, higher chip volumes).

2.3 Common characteristics

As is clear from the discussion above, both media and SDR processors are characterized by a
number of common properties: they should achieve high performance processing of data
streams, must meet real-time deadlines, should be energy efficient since they are typically used
on mobile (battery operated) devices, and they should be highly programmable as to provide
support for different and new media and radio protocols. The data streams they operate on are
relatively small (8 or 16 bit).

Figure 1 shows the throughput and power requirements of a number of wireless protocols, as
well as the performance of two processors discussed in this paper: the TI C6000 and the SODA
processor. This figure gives a good notion on the power efficiency these processors target to
achieve.

1,000 1

rd

~
3G wireless protocol
requirements Q _ ABM Cell
3 I 7
n X
= W
2 100 Kk
e st Gaming
8 SODA (90 M) @7 console
g N SODA (180 nm)
£ 53
(S 0\\&\/01 Imagine-(150-nm)
@ A
8 10 - A o \ L]
3 M 7o VIRAM(180 nm)\ Pentum M (90 im)
e 2 TICBX (130 M) WS
1Z Embedded
< multimedia General-
g purpose
11z computing
0.1 1 10 100

Power (watts)

Figure 1 - Throughput and power requirements of typical 3G wireless protocols [13]

2.4 Differences between media and SDR processors

As much as they have in common, these two groups of processors also are distinctly
characterized by their intended application: media and SDR. In the next paragraphs we will
highlight some of the major design distinctions between these two processor groups.

Differences between the two media processors, and differences between the two SDR processors
will be discussed in § 3.3 and § 4.3 respectively. Table 1 gives the specification of each of the four
processors.

SIMD width — Since media processors typically operate on small macroblocks (a macroblock is
a used in video compressing and represents a block of 16 by 16 pixels(!l), smaller vectors suffice.
This translates in narrow SIMD designs for media processors.

For SDR, on the other hand, most of the computationally intensive algorithms have abundant
data level parallelism, much more than instruction level parallelism, so wide SIMD is very
efficient.[13]

It should also be noted that SIMD in general is power efficient compared to other architectures,
since the ‘overhead’ of address calculation, address decoding, instruction fetching etc. is shared
per p operations. [16]

Predication — Predication is available on both media processors. This seems logical since in
video compressing, a common thing to do is compare data with previous data (e.g. in motion
estimation). Predication could then be a power efficient way to make decisions, as opposed to
costly branching. We have not found any hard references to back up this assumption. However,
one document explicitly mentions predication as technique for increasing performance in media
processors.[2]

For SDR processors we didn’t find any indications that predication is used.

Data width — Both media processors have a data width of 32 bits, in contrast with the SDR
processors which have only half of that.

This provides media processors with a much larger addressable memory range, not in vain given
new video standards like HDTV, which currently reaches up to resolutions of 1920x1080 pixels
(i.e. a total of 2.073.600 pixels, far beyond what is addressable with 16 bits). [1]

Algorithms running on SDR processors typically operate on variables with small values. Analysis
of two typical wireless protocols shows that there should be strong support for 8 and 16-bit
operations.[!3] Also, wireless packets handled by these processors don’t potentially consume as
much memory space as the media processors.

Unaligned loads — Media processing algorithms typically access image blocks in an un-aligned

manner. As already mentioned, when dealing with video compression, media processors handle

macroblocks. The location of these macroblocks is not fixed, neither on screen, nor in memory. It
seems logical that providing for unaligned loads allows these blocks to be fetched faster. We

don’t have any references to back up this assumption.
For SDR processors we didn’t find any indications that unaligned loads are supported.

Cache — On media processors, caches are implemented (or optional), to accommodate for
typically large images and video frames close to the processor, saving costly memory access and

bandwidth.

SDR processors don’t implement caches since they operate on streaming data (caching is of use
then), and they require real-time behavior.[!3]

Delay slots — Delay slots are available on media processors to improve performance. On SDR
processors, delay slots are not used since branch prediction isn’t use either.

Table 1 - Processor specifications

Feature Media processors SDR processors
TriMedia C6000 SODA EVP
Architecture Uni-processor Uni-processor 1 ARM processor + 4 Uni-processor
5 issue slot VLIW PEs (processing SIMD through vector
guarded RISC-like elements) static processing capabilities. 13
operations scheduled issue slot VLIW scalar and
vector operations
VLIW Yes Yes Yes Yes
Pipeline depth 7 - 12 stages 11 stages 5 stages --
Data width 32 bits 32 bits 16 bits 16 bits
Register file Unified, 128 32-bit Clustered, 16 32- Per PE: 16 vector registers (each
registers bit registers 32x16 SIMD 16-bit register contains 16
registers, 16 scalar words). 32 scalar registers.
16-bit registers
Functional 31 8 Per PE: 32+1 6 vector, 3 scalar
units
SIMD 1 x 32-bit, 2 x 16-bit, 4 C62/67:no Per PE: 16 x 16-bits
capabilities X 8-bit C64: 4 x 8-bit, 2 x 32 x 16-bit
16-bit
Memory Cache Optional cache Clustered, Scratchpad
structure Scratchpad
Global: 64 KB
Per PE: 4 KB scalar, 8
KB SIMD
¢ Instruction 64 Kbyte, 128-byte (model No No
cache lines, 8 way set- dependent)
associative, LRU
replacement policy
* Data cache 128 Kbyte, 128 byte (model No No
lines 4 way set- dependent)
associative, LRU
replacement policy,
Allocate-on-write miss
policy
Frequency 240 MHz (300 MHz) 300 MHz 380 MHz 300 MHz
(1 GHz)
Delay slots 5 for branch 1 for multiply No No
instructions instruction, 4 for a
load instruction
and 5 for a branch
instruction
Compression Yes Yes NDA NDA
(10 bit template) (using stop bits)
Predication Yes Yes NDA NDA
Forwarding Yes Yes No NDA
Unaligned Yes Yes DNA DNA
loads
Compiling / Hard. Hard. Hard. Hard.
programming C, C++ with special C, C++, assembly. SPIR on top of high EVP-C
extensions. level language

NDA: no data available

3 Multimedia processors: TriMedia and TIC6000

3.1 TriMedia

Remark: unless otherwise specified, the information in this section is taken from the main TriMedia
paper by Van de Waerdt, et al. 3]

3.1.1 Introduction

TriMedia is a family of microprocessors developed by NXP. The main application of the TriMedia
microprocessors is multimedia data processing in embedded systems. This particular application
domain shapes the TriMedia microprocessor design, diverging drastically from general purpose
processors.

TriMedia processors are deployed on consumer devices as a System On Chip solution. TriMedia is
programmable, so that it can be adapted to many different applications and so that products can
be changed through software to meet evolving standards requirements(5.

TriMedia processors employ VLIW architecture. The latest model’s CPU core (TM3270) has 31
functional units with five issue slots. This family of processors also supports SIMD operations.
VLIW and SIMD provide a high degree of instruction parallelism, optimizing the overall
performance of the system.

3.1.2 Architecture overview

TriMedia instruction and data level parallelism

TriMedia implements instruction and data level parallelism through a 5-issue slot VLIW and
through SIMD, respectively. VLIW supports up to 5 operations per instruction word. SIMD
instructions can work on two 16-bit data words or four 8-bit data words.

Figure 2 shows the functional units of the TM1000, the first member of the TriMedia family. The
TM1000 has 28 functional units divided among five issue slots. The TM3270 has added three new
functional units (totaling 31 units) but maintains the same basic design structure as the TM1000.
As can be seen in the figure, each issue slot has multiple types of functional units, allowing the
compiler more freedom when scheduling the VLIW instructions.

The TM3270 implements super-operations or two-slot operations. These operations are
executed by two functional units that occupy two neighboring issue slots. These operations can
take up to four operands and up two destination operands. Two-slot operations can improve
overall system performance since the equivalent separate operations require more cycles to
complete.

| issue slcf #1 issue sldt #£2 issue slgt £3 ' issue slft #4 | issue slpt #5

| | frough I I fcomp |
| 11 1 | L1 1 l |

| | | ifmul I | I ifmul I l |

| | L1 1 | | I - | |

| I falu I | branch I I branch I I falu I |

|

| I dspalu | | | dspmul I | I dspmul | | | branch I | Idmemspecl ‘
|

|
]
l
\

| I shifter | | | shifter I | I dspalu | | | dmem I | I dmem | J
1 1 1 | 1 1 1

| |
| I alu | | | '1111 I | I alu I : | 'illl I | I alu I |
|

]

|I const Ill const I|I const Hl const I|I const |]
A AN AAA AAA AAA AAD yyyYYy

128 x 32 bit register file

Figure 2 - TriMedia TM1000 Functional Units [5]

Cache policies and memory prefetching

The TM3270 has a 128 Kbyte data cache with 128 cache lines. The cache supports penalty-free
unaligned accesses; image processing typically requires fetching blocks of unaligned image data
from memory. The cache has a write-back policy and an allocate-on-write-miss policy. The
combination of these two policies reduces the required bandwidth to off-chip memory.

The TM3270 supports prefetching and is based on memory regions. The prefetching pattern and
region can be specified by the programmer and is designed to match the memory access pattern
of typical multimedia codec algorithms (typically unaligned and non-sequential). The TM3270
supports four separate memory regions. The pattern is defined by a start and end address and a
stride. The region specified by the start and end address is usually a complete image or frame,
and the stride corresponds to the size of the blocks within the image that are being processed.
The main goal of prefetching is to reduce cache misses and therefore avoid costly stall cycles and
improve system performance.

Pipeline

Figure 3 shows a basic block diagram of the TM3270 pipeline. The pipeline has a minimum depth
of 7 stages for single cycle latency operations and a maximum of 12 stages for more complex
instructions. The front end of the pipeline consists of instruction fetch (I1 - I3) and instruction
pre-decode (P). The instruction fetch control unit at the front end of the pipeline supports 5
delay slots for the jump operation, the number of delay slots corresponds to the distance
between the first stage and the functional units. The back end of the pipeline consists of
operation decode (D), execution (X1-X6) and write (W).

Data forwarding from the Cache Write Buffer is currently not implemented in the TriMedia
pipeline because its inclusion causes path delays beyond the desired design parameters.
Predication is supported by using guard registers; each operation execution is predicated with
the least significant bit of its guard register. [¢]

3.1.3 Compiler support

The TriMedia processor family comes with compiler support from the manufacturer. Binary
compatibility is not guaranteed between different models within the family requiring a different
compiler for each model. The supported programming language is C/C++.

Programs written in C/C++ are compatible between models provided they are recompiled for
each model. Some performance is lost when porting programs written for one model to a newer
model without including model specific optimizations. For example when porting a program
from the TM3260 to the TM3270, a performance gain of 20% can be obtained when applying
new data prefetching techniques.

I | [CPU clock SoC dock
t v v t
INSTRUCTION
T CACHE TAGS
(BWAY ASSOCIATIVE)
w 8 tags
_ TAG A
COMPARISON
REFILL UNTT |
12]
INSTRUCTION
FETCH A v
CONTROL INSTRUCTION
13 CACHE DATA
(54 KBYTE)
| 256 bits
INSTRUCTION
P BUFFER
-425 bt
s INSTRUCTION FETCH UNIT
v
w
VLIW INSTRUCTION ALIGNMENT & 2
OPERATION EXTRACTION i
w
- -
'E | 5 OPERATIONS | 5x guard ragister identifiers Z
> W 5x2 source register identfiers 2
3 BUS @
o REGISTER-FILE INTERFACE |[€>
Lo OPERATION - 128 32-bit registers : UNIT
§ DECODE - 5 1-bit read ports :
W D - 10 32-bitread ports
ﬁ -5 32-nitwrte ports
o
: | :
3 OPERATION ISSUE &
OPERAND BYPASS
A siot1 Asor Aszos Asiotd Asiots
i i || aooress REFILL UNIT |4
TWO-SLOT | CALCULATION [T
FUNCTIONAL UNIT
X2
DATA copysack | |||
X3 CACHE A UNIT
g
] X4 I:
H] PREFETCH
e = UNIT |4
8
X5 & X
S
To [
Asynchronous
Xs clock
LOAD/STORE UNIT domain
v } : transfer
v w w y v
WRITE
W BUSSES

PIPELINE STAGES

5x destination registeridantifiers
S5x destination data
to the REGISTER-FILE

Figure 3 - TriMedia TM3270 Pipeline [3]

3.2 TIC6000

Remark: unless otherwise specified, the information in this section is taken from a number of Texas
Instruments reference documents.[7][8][91(10]

3.2.1 Introduction

The TMS320C6000 digital signal processor (DSP) platform is part of the TMS320 DSP family
developed by Texas Instruments.

The TMS320 family consists of 16-bit and 32-bit fixed- and floating-point DSPs. There are three
main platforms, including the TMS320C2000 (control applications), the TMS320C5000 (power-
efficient applications), and the TMS320C6000 (high-performances applications). These
processors are used in cell phones, digital cameras, modems etc.

The C6000 platform is a very long instruction word (VLIW) architecture targeted at high-
performance DSP tasks. It comprises the following three main generations (i.e. versions):

¢ TMS320C62x (‘C62x) offering fixed-point arithmetic up to 300 MHz,
¢ TMS320C64x (‘C64x) offering fixed-point arithmetic up to 1 GHz,
¢ TMS32067x (‘C67x) offering floating-point arithmetic up to 300 MHz.

3.2.2 Architecture overview

Overview

The ‘C6000 processor consists of three main parts: a CPU, peripherals (not discussed further)
and memory. The processors operate at various frequencies, ranging from 150 MHz up to 1 GHz.

The processor executes up to eight 32-bit instructions every cycle. The core CPU, as shown in
Figure 4, consists of eight functional units, two register files and two data paths.

pi I N EEEEEEEEY
JIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'

hc Program RAM/cache Data RAM

" 32-bit address 32-bit address

n 256-bit data 8-, 16-, 32-bit data JTAG test/
EME 512K bits RAM 512K bits RAM emulation

--------@----------------@------

[|
| |
| |
| |
| |
| |
| |
| |
/ m
A< g
5 @ Program/data buses n
\ Funjammm 4- :
32-....... EEEEEEEEEEEESR EEEEEER . m
&
= - @ Tl\/}léltlcrt\)agneld a
, 1/E1) buffere
. C6000 CPU core * t:MA (T s port |a
||
: rrogram elch rg Olg'tgl)'ls : ch(a?\L:\:al) Multichannel :
- o
i Instruction dispatch 9 =l or C{(T1/E1) buffered c
: Instruction decode Clon'!f0| =| EDMA serial port |=
ol | Data path 1 Data path 2 — o .
n p T = |channel) T n
" | [Aregister file] | [B register file | est 2 @ imer g
| Emulati o
. w13 1T T e |[2 —
o | LL1ls1[mi[.D1] | [L2].52[M2].D2] | Interrupts =| Exs 3
[e or
'..............................—. Ho?tt <__I‘> PLLClOCk :
[|
Power management v PO L generator |
......................

Figure 4 - The ‘C6000 block diagram

The CPU has two clusters (labeled data path 1 and 2 in Figure 4) in which processing occurs.
Each data path has four functional units (.L, .S, .M, and .D) and a register file containing 16 32-bit
registers (32 for the ‘C64x generation).

The functional units execute logic, shifting, multiply, and data address operations. All
instructions except loads and stores operate on the registers. The two data-addressing units (.D1
and .D2) are exclusively responsible for all data transfers between the register files and memory.

The cross paths bus connecting both data paths, supports one read and write operation per
cycle.

VLIW processing flow begins by fetching a 256-bit wide packet (eight 32-bit words) from
program memory, which is then dynamically dispatched over the different functional units (FUs).
Dynamic dispatching refers to the fact that the order of instructions in a VLIW should not match
the order of the functional units; instead instructions in the VLIW are dispatched to the
appropriate FU.

The pipeline stages are grouped into 3 phases: instruction fetch (4 stages), instruction decode (2
stages) and instruction execute (maximum 5 stages). The pipeline also supports delay slots for
multiply (1 delay slot), load (4 delay slots), and branch (5 delay slots) operations.

Data and program memory — The C6000 DSP has a 32-bit, byte-addressable address space.
Internal (on-chip) memory is organized in separate data and program spaces, which may be
configured as cache on some devices. When off-chip memory is used, these spaces are unified on
most devices to a single memory space via the external memory interface (EMIF).

Memory ports — The C6000 DSP has two 32-bit internal ports to access internal data memory.
The C6000 DSP has a single internal port to access internal program memory, with an
instruction-fetch width of 256 bits.

Memory alignment — The C6400, unlike the C6200 and C6700, supports unaligned memory
access for load and store operations. Word and double-word data does not always need
alignment to 32-bit or 64-bit boundaries as in the other models.

The key extensions between the ‘C62x/’C67x architecture and the ‘C64x architecture that allow
more work each clock cycle include (see also Figure 5):

* wider data paths (dual 64-bit load/store paths instead of 32-bit),
* alarger register file (32 registers instead of 16),

* more orthogonality, i.e. more generality in the architecture (for example, the .D FU can
perform 32-bit logical instructions in addition to the .S and .L units).

* unaligned memory access for load and store operations.

* More SIMD support. For example, the functional units on the C64x can now execute two 32-
bit multiplies and four 16-bit multiplies. On Figure 5, the yellow boxes in each functional
unit on the C64x represent the increase in SIMD support. This increase in SIMD parallelism is
possible due to the increased register file size and data path width.

C62x/C67x CPU C64x CPU

- Instruction fetch .
Instruction fetch - - Control registers -
Control | Instruction dispatch Qs
- - A nterrupt - " =]
Instruction dispatch registers Advanced instruction S E
control packing édm"jgggg £8
Instruction decode Emulation Instruction decode
Data path 1 Data path 2
Data path 1 Data path 2
Register file A Register file B
A15-A0 B15-B0
Register file A Register file B =]
Jster ey [A31-A16 | [B31-B16 |
M1 M2
L1||S1 L2 : u I :
' X|.
[x] X
Dual 32-bit load/store path Dual 64—bit load/store paths

(dual 64-bit load path — C67x only)
Figure 5 - Differences ‘C62/67x and ‘C64x generation

3.23 Compiler support
The C6000 platform can be programmed using C, C++ or assembly language.

Texas Instruments provides a proprietary toolchain and IDE, called Code Composer Studio, to do
so. No other compilers are available for the C6000 platform; however, a department at the
Chemnitz University of Technology developed preliminary support for the TMS320C6x series in
the GNU Compiler Collection (GCC).[12]

The fact that only one proper toolchain is available for the C6000 platform, and that TI provides
hand-optimized libraries for various algorithms (for example, FFT), seems to indicate that it can
be a complex task for the programmer to manually develop software that efficiently uses the
architectural resources and capabilities offered.

This assumption is enforced by an Internet forum post citing a TI C compiler developer: “His
answer [to the question why there are no other compilers supporting C6000] was that when TI
developed the C6000 core, it was a side-by-side development effort by both the hardware and
software developers, and that the C compiler by necessity would be rather complex and hence very
hard for a third party to develop.” 1]

3.3 Comparing TriMedia and Tl C6000

Remark: unless otherwise specified, the information in this section is taken from a number of Texas
Instruments reference documents 7181911101 and the main TriMedia paper by Van de Waerdt, et al. 3]

TriMedia and TI C6000 achieve high performance, low power consumption and low unit cost by
implementing the architectural features described in § 2.1. However, the details of how they
accomplish each feature may differ between them. Each architectural feature implies design
compromises that were sometimes solved differently in each processor.

Most of the architectural design choices can be divided by the goal they try to reach: high
performance or low power consumption. Although these two goals certainly overlap at times, for
clarity the main comparison between the two processor families is divided as such.

3.3.1 High performance

Parallelism on TriMedia — The algorithms required to implement video processing codecs are
suitable for parallelization using VLIW and SIMD. They typically require similar independent
operations on multiple small data words. TriMedia processors provide instructions and super
instructions that accomplish typical tasks in these codecs in few cycles and with minimum
memory bandwidth consumption. The VLIW in TriMedia is implemented with 5 issue slots and
compressed with a 10-bit template field.

Parallelism on TI C6000 — VLIW and SIMD provide instruction and data level parallelism in the
TI C6000. In addition, compression through stop bits is supported: parallelism of instructions in

10

the fetched 256-bit VLIW can be controlled by using a stop bit, when setting the least significant
bit (LSB) of each of the eight contained individual instructions to either 0 or 1. When set to 1, the
individual instruction will be executed in parallel with the subsequent individual instruction.
This allows eight instructions to be executed fully serial, partially serial or fully parallel.

Large register file on Trimedia — Video processing requires working with a large data set; a
large register file prevents overuse of expensive load and store instructions. TriMedia processor
TM3270 has a unified register file with 128 32-bit registers.

Specific domain ISA instructions — Not all tasks found in video processing codecs are
parallelizable, for example in H.264 Context-Based Adaptive Binary Arithmetic Coding (CABAC)
intrinsic sequential behavior cannot be properly optimized with SIMD. The TriMedia ISA is
equipped with several native instructions to simplify CABAC programming to compensate for
this disadvantage and minimize sequential execution. TI C6000 provides also specific domain
instructions designed to optimize the execution of image processing kernels.

Fixed-point arithmetic — On the TI C6000 processors fixed-point arithmetic is less
computationally demanding than floating-point arithmetic, and thus a suitable design choice to
increase arithmetic processing speed.

Predication — Both families of processors allow instructions to be executed conditionally
(predication), thus reducing costly branching.

Delay slots — On the TI C6000, for fixed-point instructions, a number of delay slots are available.
The number of delay slots is equivalent to the number of additional cycles required after the
source operands are read for the result to be available for reading: for a multiply instruction this
is 1, for a load this is 4, and for a branch this is 5.

On TriMedia, five delay slots are provided only for branch instructions.

Clock gating and frequency scaling on TriMedia — TriMedia applies two main power saving
techniques: clock gating and voltage-frequency scaling. The latest Trimedia implements 70 clock
domains, for example all stages of all functional units are gated. The normal supply voltage is
1.2V but the TriMedia guarantees normal operations at 0.8V at a lower frequency. The maximum
operating frequency for the TM3270 is 350Mhz, ample room for scaling down its frequency when
processing typical tasks such as MP3 decoding (only 8 Mhz needed).

Clustering on TI C6000 — On the other hand, the TI C600 family, to avoid a slow and power-
hungry register file (read / write ports from each register to each of the 8 FUs) and a large
forwarding network, two data paths (i.e. clusters) are available. This allows higher frequencies
and lower power consumption.

TriMedia’s register file is twice the size of the TI C6000 and is unified. In this way TriMedia
designers choose to save memory bandwidth with a large register file and TI C6000 designers
choose to save on power consumption and to reach higher frequencies with a smaller divided
register file.

Memory Access — On TI C6000, 4 interleaved single-ported memory banks assure lower power
consumption. This however can lead to reduced performance in a VLIW architecture: only one
access to each bank is allowed per cycle; if two parallel load instructions are both trying to access
the same bank, one load must wait, resulting in a memory stall.

On TriMedia, low power consumption is also accomplished with a 4-way set associative cache.

4 SDR processors: SODA and EVP

4.1 SODA

Remark: unless otherwise specified, the information in this section is taken from the main SODA
paper by Yuan Linet al.[13]

41.1 Introduction

SODA (Signal-processing On-Demand Architecture) is a (proposed) SDR processor architecture
developed at the University of Michigan. Its main design goals are: high performance, energy
efficiency, and programmability through a combination of features that include single-instruction
multiple-data (SIMD) parallelism, and hardware optimized for 16-bit computations.

The proposed architecture has been implemented on 180 nm process technologies, and it is
projected to meet the throughput and power requirements of current wireless protocols (see
Figure 1) when implemented on 65 nm.

4.1.2 Architecture overview

Overview

The SODA system is composed of (see Figure 6): four processing elements (PEs), a scalar ARM
control processor and a global scratchpad memory, all connected through a shared bus.

ARM System Architecture Gr;:br:]

3 3
- 1 : !

Local Local Local Local
Mem Mem Mem Mem

e $ e $ PE 3 e 3
Execution Execution Execution Execution
Unit Unit Unit Unit

?
DMA + +
scalar scalar | g | m SIMD SIMD
RF MEM [F—| MEM RF
Scalar ALU \ SIMD ALU I
L7 |

Figure 6 - Overview of SODA multi-core DSP architecture

Processing Element

Each PE consists of 3 pipelines that run in lockstep: a wide SIMD pipeline, a scalar pipeline and an
AGU (address generation unit) pipeline.

* The wide SIMD unit runs most of the compute intensive algorithms (FFT, Viterbi, Turbo
decoder, etc.). The SIMD pipeline consists of 32 clusters with a 16-bit datapath (see Figure
7). Each cluster contains 1 ALU and a simple register file with 2 read ports and 1 write port.
A shuffle exchange network interconnects the clusters.

* The scalar unit is used to support many of the DSP algorithms that are scalar in nature and
cannot be parallelized. The scalar pipeline consists of one 16-bit datapath.

* An AGU (address generation unit) pipeline handles DMA transfers and memory address
calculations for both the scalar and SIMD pipelines.

12

The SIMD Shuffle Network (SSN) support intra-processor data movements. It contains a shuffle
exchange network and an inverse shuffle exchange network, which allows to efficiently perform
permutations on vectors, a common task in wireless communication algorithms.

SIMD pipeline SIMD Scratchpad Memory (8KB)
2 Read/Write Port (512bit wide)
L A
32x16bit
v 1bit o | LY] 1ebit _J
16-bif RF — P> > »E— P t6bit 16-bit W
> 16Enfrigs | | 1160t o1 p c > x |16t o ALy Multiplier 3 B
L] L] . ° L] []
. . Y . . .
. . Y . . .
v — — —
16bit Y 16bit
32-wa L L tewitRE | TP > > e — P 16bit 16-bit w
y 16 Entrigs |16bit | p < y P x 160t o a1y Multiplier A Tle
SIMD L M L L
¥ — — —
16bit v 16bit
| L] tebithr | AP > E P 16t 16-bit » W
16 Entries |16bit | p x> X | 16bit) 10 Multiplier 3 B
Y lienit o[v] sebr]
Ll 16bitRF —> > »E P 1en 16-bit » W
16 Entries [16bit | p > X | 16bit) ALy Multiplier ATle
32way _ L - -
SIMD RegFile V. VVY — -
Instruction 2 Read Ports Wide SIMD to Scalgr Ea Wide SIMD to Scalar
Memory 1 Write Ports Reduction Networl > Network
4B Stage 1 (WtoS1) =g Stage 2 (WtoS2)
I Scalar pipeline n,.sbn i ,[-[stow2
1ebit [| 16bit] | - \ To
Instruction ! 16-bit RF ot B =0 d 160 » W Scalar
Queue R 16 Entries 16bit 4D 16bit »| X ALY B RF
— Y — 512bit =
calar Scratchpad Memory (4KB) ‘)
- - ’ 2 Read/Write Port (16bit wide) < 16bit 5| DMA '"';r PE
PC & Loop AGU pipeline — o
Counter] T
1 16-bit RF 12bit_ | 1 AGU 126t | E w aou
R 16 Entries D Calculation X B HE

Figure 7 - Processing Element architecture

Control processor

The ARM processor is mainly used as a system controller to handle protocols’ control code and
state transitions.

Memory

There are no cache structures: both the local PE memories (4 KB scalar, 8 KB SIMD) and the
global scratchpad memory (64 KB) are managed by software through each PE’s DMA controller
to which all local and global memories are visible.

The SIMD memory contains two 512-bit ports (one read, one write). The scalar memory contains
two 16-bit ports (one read, one write).

Communications between PEs are via scalar streams, but intra-PE computations are vector
operations. Therefore, support for a scalar-vector interface between the scalar and SIMD pipeline
is necessary. This is shown in Figure 6 as WtoS and StoW.

4.1.3 Compiler support

It is clear that heterogeneous multiprocessor chips such as SODA provide difficult challenges for
programmers and compilers to efficiently map applications onto the hardware. Especially since
many of the projected high-performance features rely on static scheduling.

A new dataflow programming model, called SPIR (Signal Processing Intermediate
Representation), designed for modeling SDR applications has been researched by Lin et all*4]. It
acts as an intermediate representation that can be automatically generated from existing high-
level languages (such as C) through a compiler front-end.

The general idea is that SPIR represents a task graph consisting of a set of nodes (tasks, for
example a descrambler) interconnected with arrows (dataflow). Each arrow specifies the input
and output stream rates for the source and destination nodes. This property allows a compiler to
generate static execution schedules.

13

4.2 EVP

Remark: unless otherwise specified, the information in this section is taken from the main EVP
paper by Van Berkel et al.[16]

4.2.1 Introduction

Embedded Vector Processor (EVP) is an application specific processor developed by NXP. The
EVP was developed almost exclusively for SDR applications and is aimed mainly at consumer
handheld devices such as PDA, Smart Phones, Mobile Phones, etc.

EVP has been designed to execute the typical algorithms found in the modem stage (see § 2.2) in
real time and in a power efficient manner. EVP accomplishes this with data and instruction level
parallelism (vector processing and VLIW) and by providing application specific instructions.

4.2.2 Architecture Overview

Figure 8 shows a block diagram of the EVP architecture. The processor consists of a general
scratchpad program memory, a VLIW controller, an Address Calculation Unit (ACU), a vector
register file, a scalar register file, a vector memory, a set of vector functional units (FUs), and a set
of scalar functional units. The main word is 16 bits.

The VLIW controller dispatches a VLIW instruction over the various vector and scalar functional
units. The maximum VLIW-parallelism available equals five vector operations plus four scalar
operations plus three address updates plus loop-control.

The vector FUs support SIMD, allowing for data parallelism. The SIMD width of the EVP is 16
(256 bits). This implies that the EVP can execute the same instruction on 16 words of 16 bits, 32
words of 8 bits or 8 words of 32 bits.

Some of the vector FUs are very specific: the MAC unit provides for Multiply-Accumulates, the
shuffle unit can rearrange the elements of single vector, the intravector unit provides vector
specific operations such as determining the maximum element of a vector, the code generation
unit provides support or CDMA specific functionality (i.e. so called “code chip” generation).

16 words wide 1 word wide

<
o Vector memory
<
%
16 vector registers 32 scalar regsI
| 3 | 1 1 1 AV 111 N V]
Load/store unit Load/store U

|

ALU ALU

g MAC/shift unit I
3 Shuffle unit I

g Intravector unit I
g Code generation unit I

Vector FUs Scalar FUs

Program memory

VLIW controller

Figure 8 - EVP Architecture

4.2.3 Compiler Support

The EVP comes with its own language and own compiler. EVP programs are written in EVP-C a
superset of ANSI-C. C programs are mapped exclusively to the scalar units of the EVP. To exploit
the VLIW, SIMD, and vector parallelism it is mandatory to use the EVP language extensions and
some libraries. It is still a task of the programmer to manually map the DSP baseband algorithms
to their “vectorized” version in EVP-C.

14

Furthermore, manual optimization is required to achieve efficient vectorized code. As an
example, the code produced by a prototype EVP-C compiler for a specific FFT implementation
required 25% more cycles than hand-scheduled assembly code. [1¢]

4.3 Comparing SODA and EVP

This section will discuss why certain design decisions were chosen for both SODA and EVP.

4.3.1 Design goals

As stated in § 2.1, the main design goals for an SDR processor are high performance, energy
efficiency, and programmability. The table below summarizes the techniques used to achieve
this. More detail on the different techniques is provided in the subsequent paragraphs.

Unless otherwise mentioned, all techniques and discussions apply to both SODA and EVP.

High performance Energy efficiency Programmability
* Multiple parallelism * No branch prediction e VLIW /SIMD
e VLW
e SIMD
* Multiple cores (SODA
only)
* Hardware optimized for * Fixed-point operations
16-bit fixed-point
operations
* Scratchpad memory * Nocache
* Special DSP instructions * Special DSP instructions

* Separated SIMD memory

4.3.2 Wireless protocol characteristics

Wireless protocols are characterized by a number of specific properties, which have an
important impact on the design of a DSP system.

* High Data-Level Parallelism — Most of the computationally intensive DSP algorithms have
abundant data level parallelism (for example the “searcher” in a W-CDMA protocol, can be
represented by 320-wide vectors), much more than instruction level paralellism. [13]
Parallelism is elaborated on in § 4.3.3.

* 8to 16-bit data width — Most algorithms operate on variables with small values. Analysis
of two typical wireless protocols shows that there should be strong support for 8 and 16-bit
fixed-point operations. 32-bit fixed-point operations and floating-point support is not
necessary.[13]

* Real-time requirements — Strict real-time requirement in wireless protocols requires
deterministic architectural behaviour. Therefore features such as caching, multi-threading
and prediction are not well suited. [13]

* Vector operations — Intravector operations (vector reductions) and shuffling of data
within a vector is key to a number of common algorithms (e.g. FFT). Therefore specific,
power and performance optimal, support for these operations should be provided. [16]
This is elaborated on in § 4.3.4.

433 Parallelism

The key to achieve the high performance required for SDR is to maximally exploit the parallelism
available.

SODA provides three levels of parallelism: multiple cores (PEs), VLIW and SIMD. [13]

* Multiple cores — Periodic real-time deadlines require algorithms to compute with different
data rates and different latencies. Realizing this for complex protocols using a single
threaded system is too expensive (for example, complex context switching software).

However, it is necessary to support efficient concurrent DSP algorithm execution. Thereto
multiple cores, implemented as PEs, are used. (Each protocol pipeline is broken up into
kernels, and each kernel is assigned to a PE.)

Since the task in the wireless protocols analysed can be partitioned into 4 major task groups,
4 PEs has been chosen.

* VLIW — The three pipelines - scalar, SIMD and AGU - can be considered as an asymmetric
VLIW pipeline (asymmetric, since e.g. scalar instructions can not be scheduled on the SIMD
pipeline and vice versa). The scalar pipeline is necessary because there are many small,
important scalar algorithms. Wide SIMD units would be too inefficient in supporting these
scalar and narrow SIMD operations.

* SIMD — The computation intensive DSP algorithms in wireless protocols usually contain
operations on very wide vectors. In addition, vector widths and strides are known at compile
time. Although this makes a good fit for vector architectures, the extra hardware support for
dynamic vector management is unnecessary, as all data operations can be statically
scheduled. This favors a wide SIMD-style execution.

The width of the SIMD unit is not chosen to be 32 clusters by accident. It is the optimal power
consumption configuration, given the estimated computation requirement of 10 GOPS per
PE. Figure 9 maps the power consumption to SIMD width. The required 10 GOPS can be
achieved through a number of SIMD /frequency combinations, for example a 2-wide SIMD
running at 5 GHz. High frequencies require unrealistic deep pipelines (indicated by ‘T’), and
suffer from high power consumption.

o(2)=5GHZ

F
\ 12) =31
5 \
4
F ,(256) = 180MHZ

F (16) = 690MHZ F (64) = 240MHZ
1(16) =7 I(64) =5

\\ I
F (4) = 2.5GHZ x
1(4) = 18 (128) = 200MHZ
1 1(128) =5

Normalized Power
w

F o(8) = 1.3GHZ
1®)=9 F ,(32) = 380MHZ
1(32)=6
0 T T T T T T T 1
2 4 8 16 32 64 128 256
SIMD width

Figure 9 - Average normalized power requirements of a PE (180 nm)

EVP only provides two levels of parallelism: VLIW and SIMD. However, EVP differs in its VLIW
organization: it can execute multiple types of wide SIMD operations in parallel. While this
provides support for a higher degree of ILP, it also requires a more complex register file. Because
there is very limited ILP among vector computations (i.e. data level parallelism is much more
prevalent than instruction level parallelism), this extra level of parallelism does not add much to
performance. [13]

The EVP SIMD width is scalable, but has been set to 16 for the first EVP prototype, labeled
EVP;e.[16] The exact reason of choosing 16 is not specific as was the case for SODA. Of course,
higher SIMD width will provide for higher data parallelism.

4.3.4 Special DSP instructions

SODA contains special DSP instructions, both to optimize performance and power consumption.
Provided are special vector operations supported by the SIMD shuffle network (for example, the
butterfly operation to enhance FFT performance) and vector to scalar operations (for example,
determining the maximum value in a vector).

Multiply-Accumulate (MAC) instructions are not provided but instead handled by vector logic
operations (predicated negation) since many of these multiplication operations are with 1 bit
values, consuming significantly less power. [13]

16

EVP provides a number of specialized FUs (see also Figure 8). The shuffle unit provides
functionality similar to SODA’s SSN (SIMD shuffle network). The intravector unit provides
functionality similar to SODA’s special instructions for vector to scalar operations (for example it
can also determine the maximum value in a vector). The code generation unit supports CDMA
‘code chip’ generation (a code chip is a fundamental unit of transmission in CDMA, a wireless
channel access method). In a single clock cycle 16 successive complex code chips are generated.
The unit is configurable for different standard (UMTS, GPS, etc.).

Contrary to SODA, the MAC unit provides support for MAC instructions. [16]

No branch prediction — Branch prediction is not implemented, because for most DSP
algorithms the core kernels consist of shallow nested loops. Instead, for SODA, a loop counter-
based branch instruction is available. [13]

Scratchpad memory / no cache — To meet the need for high memory bandwidth and low
power consumption, an on-chip scratchpad memory is used which is small and hence fast. With
no data temporal locality (streaming data), cache structures provide little additional benefits, in
terms of power and performance, over software controlled scratchpad memories. [13]

Separated SIMD memory — Both SODA and EVP have a dedicated SIMD memory. In general
two memories consume lower power than one unified memory. In addition, this separation
allows optimization of the read/write ports for its intended use (in the case of SODA: 512-bit for
the SIMD memory and 16-bit for the scalar memory). [13]

Power consumption — At 180 nm, SODA’s power consumption is 3 W. This is too high for
embedded mobile devices (200 mW is a typical cellular phone’s power budget for the physical
layer). Scaling to 65 nm predicts the power consumption to around 250 mW. [13]

No practical comparable data is given for the EVP’s power consumption, although EVP literature
somewhat unclearly mentions that running certain UMTS protocols on the EVP results in a power
consumption close to 1 W (at 90 nm); other protocols perform better. [16]

Both EVP and SODA literature does not mention support unaligned loads, forwarding and
compression, which seems to indicate that it is not supported.

It should be clear from the previous overview that key to achieving the performance required for
SDR lies in exploiting as much as possible the available parallelism. How, then, can both SODA
and EVP reach this performance, given that SODA is much better equipped for exploiting
parallelism (running at approximately the same frequency)? SODA in addition not only has four
cores, its SIMD pipeline is 2 times wider.

A response from both a SODA and EVP developer to this same question clarifies a number of
things:

* Both cite the difference in VLIW organization — the EVP can execute multiple types of wide
SIMD operations in parallel. [151[18]

* The EVP ‘outsources’ a number of algorithms to other processors (such as the Viterbi
decoding), whereas SODA performs these functionalities on chip (i.e. on designated PEs). [15]

* For EVP to catch up with new and more demanding protocols, multiple cores are indeed
necessary. [18]

* Finally, SDR is a relatively new research topic. It is lacking standardized benchmarks, and
each wireless protocol has countless number of different implementations and
configurations. These different configurations and implementations can affect
performance/power significantly. Hence, it is very hard to compare two separated developed
and tested processors. [13]

5 Literature

5.1 General
11 Wikipedia

(21 Jason Fritts, Wayne Wolf and Bedde Liu, Understanding multimedia application
characteristics for designing programmable media processors, 1999

5.2 TriMedia

The TriMedia section was based mainly on Van De Waerdt’s paper. He designed this processor
for his thesis therefore he was able to explain thoroughly many technical details with enough
clarity and to the point. The remaining sources were used mainly to see the “big picture” of the
TriMedia, they are less technical and more concerned with consumer applications and business
aspects.

[B1 Van de Waerdt, et al. The TM3270 Media-Processor. Proceedings of the 38th Annual
[EEE/ACM International Symposium on Microarchitecture (MICRO’05). 2005

41 Hoogerbrugge Jan et al. Instruction Scheduling for TriMedia. Philips Research Laboratories.

(51 Bores Signal Processing. TriMedia Overview.
http://www.bores.com/courses/tm overview/index.htm. Last updated: March 2007.

6l Van de Waerdt, The TM3270 Media-processor, October 2006, TU Delft, ISBN 90-9021060-1,
PhD Thesis

5.3 TIC6000

Texas Instruments provides extensive documentation on the C6000 platform and the differences
between specific generations. These documents are in general very complete, however,
information on why certain features are implemented are not included.

71 Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide, SPRU189d, July
2006

Bl Texas Instruments, TMS320C6000Technical Brief, SPRU197d, February 1999
°1 Texas Instruments, TMS320C64x Technical Overview, SPRU395b, January 2001

(101 Texas Instruments, TMS320C62x DSP CPU and Instruction Set Reference Guide, SPRU731, July
2006

(111 Internet forum post “C compilers for TI TMS320 DSPs”, 2005- 3-02,
http://www.dsprelated.com/showmessage /30734 /1.php

(121 Jan Parthey and Robert Baumgartl, Porting GCC to the TMS320-C6000 DSP Architecture,
Appeared in the Proceedings of GSPx’04, Santa Clara, September 2004

5.4 SODA

The paper “SODA, A Low-power Architecture For Software Radio” seems very complete and
thorough, discussing the SODA architecture as well as the rationale behind the different design
decisions, while also setting them of against the alternatives. It was lacking however in discussing
how such a complex architecture can be reasonably programmed.

(131 Yuan Lin et al. SODA, A Low-power Architecture For Software Radio. In Proceedings of the
33rd Annual International Symposium on Computer Architecture, 2006.

(141 Yuan Lin et al, Hierarchical Coarse-grained Stream Compilation for Software Defined Radio, In
CASES’07, 2007

[151 Personal email communication with Kees Moerman, 2008-12-16.

18

5.5 EVP

There was a very limited amount of information available in the Web on the EVP. This section
was based mainly on Van Berkel’s paper. This paper does not focus on the EVP but on SDR
applications on vector processors and offers the EVP as an example; it does not explore in depth
its architectural features. Moerman'’s article offers a brief business oriented view of the EVP
capabilities and applications.

[16] Van Berkel et al. Vector Processing as an Enabler for Software-Defined Radio in Handheld
Devices. EURASIP Journal on Applied Signal Processing 2005.

(171 Moerman, Kees. Embedded vector processor is one way to tune software-defined radios.
Wireless Net Design Line.
http://www.wirelessnetdesignline.com/202403292;jsessionid=5UPHUZ4YXPVRYQSNDLRS

KHSCJUNN2JVN?pgno=1. Last updated: October 2007.

[18] Personal email communication with Kees Moerman, 2008-12-16.

19

