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Abstract 

Data collection protocols in wireless sensor networks usually contain a link 
estimator module that determines the best neighboring node to forward data to, 
typically by using information from the data link layer. The four-bit wireless link 
estimator combines information from the physical, data link and network layer to 
estimate the link quality of its neighboring nodes. This link estimator has been 
shown to perform better than other state-of-the art estimators. 

The collection protocol in the Contiki operating system is currently equipped with 
a simple link estimator, but would benefit from a more advanced link estimator 
such as the four-bit link estimator. It would also provide for an opportunity to 
evaluate the proclaimed performance of this estimator. 

In this work we present a solid foundation for implementing and evaluating the 
four-bit wireless link estimator in the Contiki collection protocol. The four-bit 
estimator details are researched and compared to the Contiki collect link 
estimator. A number of evaluation metrics are proposed, and an initial 
evaluation is performed through some small-scale simulations. 

Keywords 

Wireless sensor network, link estimation, four-bit wireless link estimation, 
routing, data collection protocol, Contiki, Cooja  
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Abstract 

Datacollectieprotocollen in draadloze sensornetwerken bevatten over het 
algemeen een linkschattingsmodule die de meest geschikte aanpalende node 
bepaalt om data naar door te sturen. Deze schatting gebeurt typisch op basis 
van informatie uit de datalinklaag. De 4-bits draadloze linkschatter (‘four-bit 
wireless link estimator’) maakt gebruik van informatie uit zowel de fysische laag, 
de datalinklaag als de netwerklaag om de linkkwaliteit naar aanpalende nodes te 
bepalen. Van deze 4-bits linkschatting is aangetoond dat de performantie beter 
is dan andere state-of-the-art link schattingsmethoden. 

Het datacollectieprotocol in het Contiki besturingssysteem is momenteel 
uitgerust met een eenvoudige linkschattingsmodule, maar zou baat hebben bij 
een meer performante linkschatting. Deze implementatie zou ook toelaten om 
de geclaimde performantie van de 4-bits linkschatter te evalueren op een ander 
dan het originele platform. 

Dit werk is een studie van de 4-bits linkschatter, en laat toe om deze te 
implementeren en te evalueren in het Contiki datacollectieprotocol. De 
linkschatterdetails worden onderzocht en vergeleken met de huidige Contiki 
collect linkschatter. Er worden evaluatiecriteria voorgesteld, en een eerste 
evaluatie door middel van enkele kleinschalige simulaties wordt besproken. 

Trefwoorden 

Draadloos sensornetwerk, linkschatting, 4-bits draadloze linkschatting, 
routering, datacollectieprotocol, Contiki, Cooja 
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1 Introduction 

1.1 What it is about 

If you do not happen to be active in a telecom related research field, chances 
are fairly small that you have ever heard of wireless sensor networks 
(WSNs). A wireless sensor network is exactly what its name implies; it is a 
network of small devices which each contain a sensor (to measure for example 
temperature, or pressure, or both), and which communicate with each other 
wirelessly.  

WSNs have come into existence only about a decade ago. As often the case, 
their birth was inspired by military motives, where the idea of so-called ‘smart 
dust’ was proposed. As the story goes, smart dust is a collection of tiny, dust-
sized devices that can be sprinkled by an airplane over hostile territory. Once 
deployed, these devices start gathering tactical data such as troop movements, 
and transmit this data from one device to another until it happens to reach some 
sort of collection point – for example a computer in a scouting vehicle – were the 
data can be collect and further analyzed. 

WSNs have since left the exclusive military research domain, and are currently a 
hot research topic at academia. They have been researched and tested to 
monitor more peaceful topics such as zebras, sheep, glaciers or volcanoes (see 
Figure 1). Current devices have not yet shrunk to the envisioned dust-sized 
particle, but are typically about the size and shape of a cookie and can – in the 
best cases - operate independently up to a couple of years on a battery. A 
number of related standards have emerged (e.g., Zigbee), and WSN devices 
have become commercially available. Companies have sprung up to deploy 
applications where WSNs are used to monitor e.g. computer server parks, or the 
perimeter of your home or office building. 

 

Figure 1 – A wireless sensor network setup for volcano monitoring (source: [13]) 
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Still, a lot of WSN research is going on. The quest to prolong the independent 
operation of these battery-powered devices fuels research for new ways to limit 
the energy consumption, which is primarily defined by the radio communication 
between the devices. Also, novel ways are researched to transfer the data in the 
most optimal way (i.e. requiring the least energy) to a nearby collection point. 

One such research topic focuses on the way in which a device selects the 
optimal neighbor to send its data to. Out of the potentially many neighboring 
devices it can communicate with and set up a link, it has to estimate which link 
is the best one. The component of the routing algorithm that decides upon this 
is called a link estimator. 

Initial link estimators were relatively simple and selected the neighbor that led 
to the collection point with the fewest number of hops (i.e. jumps from device to 
device). A number of improved link estimators have been proposed, a recent 
one being called four-bit wireless link estimator (4B), and subject of this 
work.  

The 4B link estimator uses well-defined information from three different OSI 
layers to determine the link quality. The OSI reference model is a well-known 
theoretical model which divides a communication protocol in seven layers, of 
which the bottom three are the physical, data link and network layer. The 4B 
link estimator uses four bits of information from these three layers: it exploits 
the radio channel quality information from physical layer, and combines it with 
the expected-number-of-transmissions estimate from the data link layer and 
information from the network layer. 

 

Figure 2 – The four-bit wireless link estimator and the OSI reference model 

In an implementation in the WSN operating system TinyOS, this link estimator 
has been shown to provide better results than other state-of-the-art link 
estimators.  

Contiki is another open-source WSN-targeted operating system, developed at 
the Swedish Institute of Computer Science (SICS). Contiki features a lightweight 
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network stack called Rime that provides, among other things, a data collection 
protocol to route data to a collection device. This collection protocol has a simple 
link estimator based on information solely from the data link layer.  

It has been deemed useful by SICS to incorporate the 4B link estimator in 
Contiki, both to validate (or refute) the improved performance of this estimator, 
as well as to equip the collection protocol with a better link estimator. 

Since the VUB TELE research group is also active on Contiki-based WSN 
research, and since a testbed of Sentilla nodes (see Figure 3) is available to run 
experiments on, this research project was a perfect fit.  

 

 

Figure 3 – A WSN Sentilla node as used at the VUB 

1.2 Goal of this work 

As it was realized during this work that the original 4B paper[8] was not as 
detailed as initially assumed, the goal of this work is to study the details and 
application domain of the 4B link estimator as to provide a solid foundation for a 
future implementation and evaluation of 4B.  

Personal motivation 

On a personal level, I was interested in doing this thesis for a number of 
reasons. I think they are equally important for stating here, since they, as well, 
shape the setup and content of this thesis: 

• I believe that for any student in the field of computer science, it is of great 
value to have some practical experience with the C programming language. 
Not only for adding an extra language to one’s toolkit, but also since C 
exposes some of the lower level details when interfacing with hardware, 
thereby providing a lot of insight. Since I had no practical experience 
programming in C, I deemed it important to do so before graduating. 

• I am interested in networking and the co-operation of distributed systems. 
Wireless sensor networks provide a fascinating blend of both these topics. 
This thesis provides me with the opportunity to get hands-on experience and 
contact with networking stacks. 
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• The Contiki operating system is a relatively young but very vibrant, fast-
moving research project. It is rewarding to try to contribute to such a 
project.  

1.3 Outline and contributions of this work 

Research contributions 

This work provides a solid foundation for the implementation and evaluation of 
the four-bit wireless link estimator in Contiki: 

• After a short introduction to wireless sensor networks (§ 2.2) and showing 
the relevance of link estimators in collection protocols (§ 2.3), we completely 
dissect and document the current Contiki data collection protocol (§ 2.5). 
This information is based on a detailed study of the Contiki source code. 

• We completely dissect and document the 4B wireless link estimator (§ 3), 
discussing the differences with the Contiki collect estimator. This study is 
then used for an initial, working implementation in Contiki (§ 3.3). 

• Finally, we propose a number of evaluation metrics (§ 4.2), investigate 
evaluation conditions (§ 4.3.2), and perform some small-scale simulation 
experiments. 

Community contributions 

Additionally, this work also resulted in a number of minor contributions to the 
Contiki community: 

• To alleviate the problem of lack of documentation, two tutorials were created 
and published on the Contiki website. The first tutorial (see § 8.1) describes 
in detail the installation process of Contiki and Cooja on Ubuntu. The second 
tutorial (see § 8.2) is more extensive and describes ‘getting started with 
Sentilla nodes’. 

• A number of bugs were discovered and reported to the Contiki mailing list 
(see § 8.5). 

• The reliable unicast primitive brunicast (see § 3.4) was submitted for 
replacement of runicast and stunicast in the Rime stack. 
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2 Background 

In this section we will introduce wireless sensor networks, see how a typical 
WSN data collection protocol operates and why a link estimator is important. 
The Contiki operating system will be introduced, together with some of its 
relevant components such as the Rime network stack, the announcement 
module, and the Cooja network simulator. The Contiki collect protocol will be 
discussed in detail, and finally an overview will be given of the 4B link estimator. 

2.1 Wireless mesh networks 

Recently, wireless networks have become increasingly important to computer 
networking and they have already diversified in a number of different types of 
networks.  

2.1.1 Categorizing networks 

One popular way to categorize these wireless networks is according to the 
distance. This results in categories such as Wireless Personal Area Networks (a 
couple of meters, e.g. Bluetooth), Wireless Local Area Networks (up to 100 m, 
e.g. Wi-Fi) and Wireless Wide Area Networks (several kilometers, e.g. WiMax). 

Another way to categorize wireless networks is according to the number of 
wireless links each end device is separated from a base station or target device. 
In the above mentioned examples this is typically one (e.g. from laptop to base 
station, or from a Bluetooth device to a computer). Once a data packet has to 
traverse multiple wireless links to reach the base station or target device, we 
call them multi-hop wireless networks. 

Distinguishing between these two categories makes sense, since the difficulties 
to provide reliable communication between devices differ substantially in both 
cases.  

2.1.2 Multi‐hop wireless networks 

A multi-hop wireless network is a network of computers and devices (nodes) 
which are connected by wireless communication links. The links are most often 
implemented with digital packet radios. Because each radio link has a limited 
communications range, many pairs of nodes cannot communicate directly, and 
must forward data to each other via one or more cooperating intermediate 
nodes. A source node transmits a packet to a neighboring node with which it can 
communicate directly. The neighboring node in turn transmits the packet to one 
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of its neighbors, and so on until the packet is transmitted to its ultimate 
destination. Each link that a packet is sent over is referred to as a hop; the set 
of links that a packet travels over from the source to the destination is called a 
route or path. Routes are discovered by running a distributed routing protocol on 
the network.[7] 

Figure 4 shows an example of a multi-hop wireless network. These networks are 
often called mesh networks, in reference to the topology formed by the links 
and nodes. Typically a mesh network does not operate in isolation, and often 
has one or more gateways that connect it to a larger internet. [7] 

 

Figure 4 – A multi-hop ‘mesh’ wireless network (source: [7]) 

2.2 Wireless Sensor Networks 

If in addition these nodes are equipped with sensors (such as a temperature or 
pressure sensor), the result is what is called a wireless sensor network 
(WSN). WSN technology is only about a decade old and is receiving a lot of 
attention from the research community. 

The potential application domain for wireless sensor networks is diverse. 
Applications such as industrial monitoring, volcano monitoring and habitat 
monitoring (wireless sensor networks have been used to track zebras and 
sheep) involve a few tens of nodes. Monitoring a large bridge may require a few 
hundred nodes. Some WSN protocol literature even boldly envisions 
deployments of thousands of nodes.[14] 

The typical hardware architecture for a WSN node is embodied by what is called 
a mote platform.[11]. Typical motes are of a small physical size (see Figure 5), 
are battery powered, composed of an 8-bit microcontroller, ROM in the order of 
100 kilobyte, and less than 20 kilobyte RAM.[4] Four fundamental constraints 
shape wireless embedded system and network design: power supply, limited 
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memory, the need for unattended operation, and the lossy and transient 
behavior of wireless communication.[11] 

 

Figure 5 – Different motes, each with a 8 MHz microcontroller, 10kB of RAM, 
48kB of program flash, and a 250kbps radio (source: [11]) 

Networking issues are at the core of embedded sensor network design because 
radio communication – listening, receiving, and transmitting – dominates the 
active energy budget and defines the node and overall system lifetime. [11] 

The standard energy cost metric for multi-hop protocols, in either link layer 
meshing or network layer routing, is communication cost, defined as the number 
of individual radio transmissions and receptions (including listening). One 
protocol is more efficient than another if it can provide equivalent performance 
(e.g., throughput, latency, delivery ratio) at a lower communication cost. 
Protocols focus on minimizing transmissions and making sure transmitted 
packets arrive successfully. [11] 

2.3 Collection protocols & link estimators 

Almost all sensor network systems rely on two multi-hop protocols for their basic 
operation: a data collection protocol for pulling data out of a network and a 
dissemination protocol for pushing data into a network through one or more 
distinguished nodes. Since the typical sensor network goal is to report 
observations, it is no surprise that data collection is the most studied class of 
protocol. [11] In this work we will consider only collection protocols. 

All commonly used collection protocols provide unreliable data packet delivery to 
a collection point (also called sink or gateway) using a minimum-cost routing 
tree. The cost is typically measured in terms of expected transmissions, or 
ETX[7]: the nodes send packets on the route that requires the fewest 
transmissions to reach a collection point.[11] 
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Early collection protocols dynamically set up collection trees based on specific 
node requests.[10] Currently, newer protocols have moved to a simpler approach 
where each node decides on a single next hop for all forwarded data traffic 
thereby creating routing trees to fixed collection points. The network builds this 
tree by establishing a routing cost gradient. A collection point has a cost of 0. A 
node calculates the cost of its candidate next hops as the cost of that node plus 
the cost of the link to it. Inductively, a node’s cost is the sum of the costs of the 
links in its route. See Figure 6.[11] 

 

Figure 6 – A sample collection tree, showing per-link and node costs. The cost of 
a node is its next hop’s cost plus the cost of the link (source: [11]) 

Collection variations boil down to how they quantify and calculate link costs, the 
number of links they maintain, how they propagate changes in link state 
amongst nodes, and how frequently they re-evaluate link costs and switch 
parents. The link estimator is the functional part of the collection protocol that 
is responsible for quantifying and calculating the link costs.  

Table 1 provides a general history of collection protocols and link estimators and 
shows some trends in the approaches to optimize collection protocols. The 
Collection Tree Protocol (CTP) is the standard collection protocol in TinyOS, and 
uses the 4B link estimator to estimate the quality of its links. 

Most collection layers operate as anycast protocols. A network can have multiple 
data collection points, and collection automatically routes to the closest one. As 
there is only one destination—any collection point—the required routing state 
can be independent of network density and size. Most protocols use a small, 
fixed-size table of candidate next hops. They also attempt to strike a balance 
between route stability and need to discover new, possibly better parents by 
switching parents infrequently and using damping mechanisms to limit the rate 
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of change.[11] 

Table 1 – Collection protocol and link estimator generations[11] 

Generation Approach Example protocols 

1st  Hop-count is used as the link cost metric (similar 
to MANET protocols such as AODV and DSDV) 

• SP (Shortest Path) 

2nd  Periodic broadcasts are used to estimate the 
number of transmissions per link. 

• Mintroute 

• Srcr 

3rd  Physical layer signal quality is added to the 
metric. 

• MultiHopLQI 

Current Combine these methods, drawing information from 
multiple layers. 

• Collection Tree Protocol 
(CTP) 

 

As an example of the damping mechanism, and as we will see later, the 
collection protocol in Contiki averages the ETX value over the last eight ETX 
values. 4B uses EWMA (exponentially weighted moving average) to calculate the 
ETX value of a link. 

2.4 The Contiki operating system 

Before describing the collection protocol that will be modified to use the 4B link 
estimator, we introduce the Contiki operating system and a number of relevant 
Contiki networking components. 

2.4.1 Overview 

Contiki[2] is an open-source multi-tasking operating system targeted at 
microcontrollers with small amounts of memory, such as wireless sensor 
network nodes. A typical Contiki configuration is 2 kilobytes of RAM and 
40 kilobytes of ROM[2]. Contiki is written in the C programming language, and 
has been developed at the Swedish institute of Computer Science since about 
2004. It is similar to TinyOS, another well-known open-source operating system 
targeted at WSNs. 

Contiki provides a wide range of features not necessarily expected in such a low 
footprint operating system, such as an interactive shell, a web browser and a 
flash-based file system.[2] 

More importantly, it provides two communication stacks: uIP and Rime. uIP is a 
small RFC-compliant TCP/IP stack that makes it possible for Contiki to 
communicate over the Internet. Rime is a lightweight communication stack 
designed for low-power radios. Rime provides a wide range of communication 
primitives, from best-effort local area broadcast, to reliable multi-hop bulk data 
flooding.[1] It is the latter communication stack – Rime – that will be discussed 
and used throughout this work. 

Contiki also comes with a number of network simulators, of which the Java-
based Cooja simulator is the most advanced. Cooja is a discrete event simulator 
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that provides a number of radio medium such as UDGM (Unit Disk Graph 
Medium) and MRM (Multi-path Ray-tracer Medium). Cooja is the simulator that 
will be used for evaluating the four-bit wireless link estimator in this work. 

 

 
 

Figure 7 – Cooja, the network simulator that comes with Contiki 

2.4.2 The Rime stack 

The Rime communication stack provides a set of basic communication primitives 
ranging from best-effort single-hop broadcast and best-effort single-hop unicast 
to best-effort network flooding and hop-by-hop reliable multi-hop unicast. It has 
been designed to map onto typical sensor network protocols: data 
dissemination, data collection, and mesh routing.[5]  

The major components of the Rime protocol stack are shown in Figure 8. 

The Rime stack builds on top of the physical layer and the MAC layer. The 
physical layer is handled by the radio driver. The MAC (medium access control) 
layer is a sublayer of the data link layer, and a common requirement for any 
shared medium communication.  

The Rime stack spans the rest of the data link layer and (part of) the network 
layer. It consists of a number of compact primitives, each building on the other 
to add additional functionality. The bottom most primitive of the data link layer 
only provides anonymous single-hop broadcast. The topmost data link layer 
primitive is the reliable unicast primitive; it provides single-hop reliable data 
transmission between two neighboring nodes. This is done by using 
acknowledgements and a number of retransmission to assure that the neighbor 
receives the packet.  

A number of Rime primitives are available in the network layer, of which only 
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the collect primitive is of importance to us. It provides for a data collection 
protocol by building upon the reliable unicast primitive. The collect primitive (or 
Contiki collect protocol) is discussed at length in § 2.5. 

 

Figure 8 – The communication primitives in the Rime stack 

2.4.3 The announcement primitive 

The announcement primitive is a recent addition (spring 2009) to the Rime 
communication stack. It is of importance to this work, because it is used by the 
Contiki collect protocol. 

The primitive acts as an announcement abstraction to disseminate small 
amounts of data (16+16 bits) to neighbors. Announcements are a more energy-
efficient implementation of repeated broadcasts, since they allow nodes to 
selectively listen for them.  

The actual implementation can be optimized to suit the used MAC protocol by 
selecting (or creating) an appropriate announcement back-end. Contiki currently 
(April 2009) has three announcement back-ends implemented:  

• polite-announcement, which uses periodic broadcasts to send out 
announcements, 

• xmac-announcement, which sends out announcements at the MAC layer 
when using the XMAC MAC protocol,  

• lpp-announcement, also sends out announcements at the MAC layer, as part 
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of the LPP beacons when using the Low Power Probing MAC protocol. [3] 

The polite-announcement will be used when evaluating the Contiki collect 
protocol (see § 2.5). It is particularly suitable when using the Contiki nullmac 
MAC layer protocol in the Cooja simulator. The nullmac MAC layer protocol is a 
simple pass-through protocol, and doesn’t perform any medium access control. 

The polite-announcement back-end works as follows. Polite-announcement is 
parameterized by two values: an announcement time period tstart and tmax. When 
the value to announce changes, the announcement primitive starts sending out 
an announcement packet with the announcement period tstart (for example, 
t=8 seconds). The period doubles after each send (see Figure 9-a), with the 
period being limited to tmax.  
The send action itself is not immediate, but is instead handled by the Rime 
ipolite primitive[5]. This polite algorithm is also parameterized by a time interval, 
in this case the same as the announcement period. During the first half of the 
time interval, the sender listens for other transmissions. The packet is sent at a 
random time during the second half of the interval, as shown in Figure 9-b.  
The reason for this delayed sending is to potentially cancel the sending if a 
similar packet is received by the node itself. This, however, will never occur, 
given the way the collect protocol uses the announcement primitive. 

 

Figure 9 – The polite-announcement algorithm 

2.5 The Contiki collect protocol  

The Contiki collect protocol implements a hop-by-hop reliable data collection 
mechanism. Data is sent via a tree topology to a sink node.  

An overview of the Contiki collect protocol is given in Figure 10. It illustrates the 
response of the collect protocol to a number of events: an incoming data packet, 
an acknowledgment or time-out of a sent data packet, an incoming 
announcement packet, and the sending of a message by the application using 
the collect protocol. This figure will also be referred to later in the text. 
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Note: the description in this section is based on the following Contiki file 
versions: collect.c v1.28, neighbor.c v 1.16. Since then, the collect protocol has 
been improved with a packet buffer, allowing more than one packet to be 
forwarded at the same time. 

 

Figure 10 – The Contiki collect protocol: event processing 

2.5.1 Components  

The protocol consists of a number of high-level components: 

• Routing (tree creation) — The nodes self-organize in a tree topology, with 
data always being sent up the tree until it reaches the top node. The sink 
node is assigned to be the top of the tree, all other nodes are initially tagged 
as leaf nodes. Gradually, spreading outward from the sink node, nodes 
update their position in the tree. 

• Neighbor discovery and management — In a separate background 
process, neighbors announce their presence by periodically sending out 
announcement packets. These announcements are used to populate the 
neighbor table with neighbors. 
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• Link estimation — Based on link level acknowledgments for data packets 
sent by the node, the ETX value of each neighbor in the neighbor table is 
updated on each acknowledgment or time-out. 

• Duplicate packet filtering and packet aging — Packets get forwarded by 
nodes until they reach the sink node. To protect against forwarding duplicate 
packets, a node checks a packet to be forwarded against a limited history of 
forwarded packets. If it has recently been forwarded, the packet is dropped. 
Additionally, to prevent packets from roaming through the network forever, 
the packet is dropped if it exceeds a certain maximum number hops.  

On a side note, the Contiki collect protocol does not contain any loop detection 
mechanism. Routing loops generally occur when a node chooses a new route 
that has a significantly higher ETX than its old one, perhaps in response to losing 
connectivity with a candidate parent. If the new route includes a node which was 
a descendant, then a loop occurs.[18] It would be interesting to investigate and 
implement a number of practical solutions to alleviate this. For example, the 
collect protocol could be modified to include the current node’s routing cost 
gradient in the packet header, and prevent the receiving node from forwarding 
packets with a lower gradient. [18] 

2.5.1.1 Routing (tree creation)  

The routing mechanism to transport data originating from any node to the sink 
node builds a routing tree (see also § 2.3). 

All nodes are organized in a virtual tree, with their position in the tree defined by 
a 16-bit rtmetric (route metric) value. The sink node, at the top of the tree, has 
an rtmetric value 0. Child nodes further down the tree have an increasing 
rtmetric value. The parent of a node is the best neighbor of node, i.e. the node 
that minimizes the expected number of transmission to the sink.  

The tree is created dynamically by updating the rtmetric value at particular 
events. Initially all nodes have the maximum rtmetric value (this maximum is 
currently set to 255, not all 16 bits are used), except for the sink node which 
has value 0 assigned by the application using the collect protocol. The 
announcement packets sent out for neighbor discovery (see § 2.5.1.1) report 
the rtmetric value of the announcing node. This neighbor's rtmetric value is 
stored in the neighbor table of each receiving node. 

The node's own rtmetric value is then calculated based on the rtmetric value of 
the best neighbor node. The best neighbor node is the node that provides the 
path with the fewest expected transmissions to the sink node. This is the case 
for the neighbor that minimizes the sum of the neighbor rtmetric and the 
expected number of transmissions (ETX) from the node to that neighbor.  

 

€ 

rtmetric = argmin
n∈N

(rtmetricn + ETXn ) (eq. 1) 

The rtmetric value is updated on the following events: designation of a node as 
sink node, an incoming announcement packet, the acknowledgement of a data 
packet and the time-out of a data packet. 

The rtmetric calculation process gradually trickles down from the neighbors of 
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the sink node to the leaf nodes. Once the process has stabilized, the rtmetric of 
a node represents the expected number of total transmission for a packet to 
arrive at the sink node.  

2.5.1.2 Neighbor discovery and management 

See Figure 11. 

Neighbor discovery and management is located in a separate code module 
(core/net/rime/neighbor.c). This is also the location where the neighbor table is 
managed. 

Neighbor discovery is organized using the Rime announcement primitive, see 
§ 2.4.3. The announcement primitive periodically sends out announcement 
packets (specifically tagged as such) on a separate logical channel. 
Announcements are characterized by an (ID, value) tuple and are disseminated 
to local area neighbors. Incoming announcement packets do not traverse the 
complete Rime stack, but instead are intercepted at the MAC layer. The MAC 
layer then notifies any registered processes (based on the announcement ID) 
about the incoming announcement.  

The collect protocol is such a registered process, and it uses the incoming 
announcement to populate a neighbor table. The announcement specifies the 
sending neighbor address, the ID (which is set to the channel number but of no 
further use), while the value represents the routing metric used for tree creation 
and routing. Since the neighbor table is limited in size (currently set to 8 
neighbors), it is important that 'old' neighbors do not occupy the table for too 
long. Thereto, a timer triggers periodic (i.e., every second) scanning of the 
neighbor table and removes all neighbors which haven't been heard from during 
the previous 120 scans (i.e., roughly 120 seconds). 

2.5.1.3 Link estimation 

See Figure 11. 

The ETX values for each node's neighbors are stored in the neighbor table, and 
are calculated each time a data packet is sent to a neighbor. When the sent 
packed is ACK'ed, the number of transmissions that was required to deliver the 
packet is reported to the link estimator.  

Each of the last eight transmission counts is kept in the table. The link ETX value 
from a node to a neighbor is then the average over these eight transmission 
counts. If a transmission times out, the maximum number of transmission (e.g., 
4) is reported and added to the current history entry (instead of overwriting it). 
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Figure 11 – The Contiki collect protocol: link estimator and neighbor 
management 

!
"
!
#
$ $
%&
'
(

!
"
#
$
%&
'(
&
%)
*+
',
-'

.
&
*/
0
1
,
)

2
&
*/
0
1
,
)'

*.
'%
$
1
3&
4

2
,

5
#
#
'6
7
4

8
&
9

:
&
(
,
;
&
',
3#
'

.
&
*/
0
1
,
<
)9

=
%,
"

%*
(
&
'>
'?

-,
)'
&
$
+
0
'

.
@'
%*
(
&
A
A

-,
)'
&
$
+
0
'

.
@'
%*
(
&
A

A

2
, 5
B
7
&
#
4

)*
+
,
&
%*
-
.

/
0
1
2

3%
&
'
4,
5
3

%*
(
&
'>
'?

8
&
9!
"
#
$
%
&
'
(
)
*

=
&
&
'C
*/
<
)&
'D
D

)*
+
,
&
%*
-
.

6
*
*
,
5
*
+
&
7

2
,

8
9
:
6
3'
.!
$
;

=
&
&
'C
*/
<
)&
'D
D
D

/
:
:
.*
'
%-
<
=
,
(

9
&
%'
E
F
D

$
#
#
'E
F
D

G
H

I
J

H
G

I
K

G
H

I
J

H
G

I
K

E
F
D

H
'A
'E
F
D

&
%L
'0
*9
%,
)M

&
%L
'0
*9
%,
)M

!
>
6
&
9
?'
.,
@.
AB
'
3.
!
$
;
A.
6
+
3%
,
*
.C
%*
.+
6
B
'
.,
@.
3%
&
'
4,
5
3D
E

!
>
6
&
9
?'
.,
@.
AB
'
3.
!
$
;
A.
6
+
3%
,
*
.C
%*
.+
6
B
'
.,
@.
/
0
1
DE

8
9
:
6
3'
.!
$
;

N
&
(
'

$
;
$
*34

C
3<
9
0
'%
$
1
3&
'&
.
%)
M

5
#
#
'.
&
*/
0
1
,
)'
%,
'

%$
1
3&

8
&
9

2
,

=
%,
"
'O
C
5
PQ
R

C
*.
#
'S
,
)9
%'

.
&
*/
0
1
,
)

8
&
9

=
%,
"
'

O=
!
B
B
E
=
R

=
%$
)%



2 - Background   17 

2.5.1.4 Duplicate packet filtering and packet aging  

See also Figure 10. 

Duplicate packets can be created upon retransmission when the ACK is lost. 
Without duplicate packet elimination, these will be forwarded, possibly causing 
more retransmissions and more contention, and wasting energy. To protect 
against forwarding duplicate packets, a node will not forward a packet that it has 
recently forwarded. Thereto it keeps a small history of recently forwarded 
packets (currently 2 packets), which are uniquely characterized by their packet 
ID (EPACKET_ID) and originating node (ESENDER). If a node receives a packet 
that has the same ID and originator address, the packet is dropped. 

Additionally, to prevent packets from roaming through the network forever, the 
packet is dropped if it exceeds a certain maximum number hops. Thereto each 
packet has a time-to-live (TTL) attribute, which is initialized to 10 and gets 
decremented each time a packet is forwarded. On receiving a packet with a TTL 
value of 1 or lower, the node drops the packet. 

2.5.2 Protocol attributes  

The following attributes (i.e. fields) are attached to a packet sent using the 
collect protocol: 

• EPACKET_ID. Each packet originating from a node gets a 4-bit packet ID 
(also called sequence number). Together with the originating address stored 
in the ESENDER attribute, it uniquely identifies the packet. 

• ESENDER. The address of the node initializing the send of the packet. 

• HOPS. This attribute represents the current hop count. It is initialized to 1, 
and will be incremented on each forward by a node.  

• TTL. The time-to-live represent the maximum number of hops the packet 
can make. It is initialized to 10. On each forward by a node, the TTL value is 
decreased by 1. If a node receives a packet with TTL equal to (or lower than) 
1, the packet is discarded. This prevents packets from traveling through the 
network forever.  

• MAX_REXMIT. Used by the underlying reliable unicast Rime layer 
(runicast). This value represents the maximum number of link-level 
transmissions to send or forward the packet to a neighbor. If the maximum 
number of transmissions is reached, the packet times out. Upon time-out of 
a packet, the packet is dropped, the neighbor ETX data is updated, and the 
rtmetric is updated as well.  

Note that there is no destination address attribute, since for the collect protocol 
all data is send to the sink, i.e. the node with the routing metric 0. 

The following table lists the attributes attached to a packet by the collect 
protocol and underlying Rime layers (shown from left to right). 
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Table 2 – Rime packet attributes for the collect protocol and underlying layers. 
The figure indicates the number of bits used 

Attribute collect reliable 
unicast unicast broadcast anonymous 

broadcast 

EPACKET_ID (end-to-end) 4     

ESENDER (end-to-end) Addr length     

HOPS 4     

TTL 4     

MAX_REXMIT 3     

PACKET_ID  (single-hop)  2    

PACKET_TYPE  1    

RELIABLE  1*    

RECEIVER (single-hop)   Addr length   

SENDER  (single-hop)    Addr length  

* The RELIABLE attribute is only used internally to optimize radio operation (guiding the 
decision to either switch off the radio after sending, or to keep the radio on in anticipation 
of the ACK), but is not attached to the outgoing packet. 

2.5.3 Operation (initialization, sending and receiving) 

2.5.3.1 Initialization  

When the collect protocol is initialized (by calling collect_open), the underlying 

reliable unicast (runicast) connection is initialized, the rtmetric of all nodes are 
initialized, and neighbor discovery is started (by registering with the 
announcement primitive) on a separate channel.  

For the protocol to operate correctly, the application should assign one node as 
the sink node by calling collect_set_sink on that node. 

2.5.3.2 Sending messages  

See Figure 10. 

To send data to the sink, an application calls the collect_send function. The 

algorithm operates as follows:  

1. First, all collection specific attributes (see § 2.5.2) are set.  

2. Then, the node sends the packet to its parent using reliable unicast. 

The underlying reliable unicast will send a packet reliably to a neighbor, i.e. 
it will try to deliver a message to the neighbor by trying for a maximum 
number of times until the packet is ACK'ed. If it succeeds, it notifies the 
upper layer (in this case, the collect protocol). If it doesn't succeed (i.e. the 
packet has not been ACK'ed after the specified number of times), it times out 
and notifies the upper layer of the time-out. 
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The parent node is determined each time upon sending by requesting the 
best neighbor from the neighbor table. If no best neighbor can be found (i.e., 
the table is empty), the packet is dropped and the node actively listens for 
announcements (during a limited period) to detect potential neighbors. 

Should the send function have been called on the node that is the sink node, 
the receive function of the application using the collect protocol is called, and 
no reliable unicast send takes place.  

3. When the sent packet gets ACK'ed by the parent (node_packet_sent is 
called) or times out (node_packet_timedout is called), the node's rtmetric 
and the ETX of the parent is updated. 

2.5.3.3 Receiving messages  

See Figure 10. 

Two types of packets can be received: data packets and announcement packets. 

Data packets 

When a node receives a collection data packet (via reliable unicast which calls 
the function node_packet_received) several things happen:  

• First, duplicate packet filtering is executed: the packet is checked against the 
last two forwarded packets. If the ID (EPACKET_ID attribute) and originator 
address (ESENDER attribute) match with any of these, the packet is 
dropped. 
If not dropped, the ID and originator address of the received packet is stored 
in the recently forwarded packets table.  

• If the node receiving the packet is the sink node, the application using the 
collect protocol is notified of the reception of a packet. The originator 
address, packet ID and number of hops the packet has travelled are provided 
as arguments.  

• If the node receiving the packet is NOT the sink node, the packet has to be 
forwarded. 

• If the TTL value is 1 (or lower), the packet is dropped. 

• The HOP count is incremented, and the TTL is decremented. 

• The packet is forwarded to its parent using the underlying reliable unicast 
layer. The parent selection is identical as described under "Sending 
messages" (see § 2.5.3.2). 

When a packet has not yet been ACK'ed or timed-out, new packets cannot be 
forwarded but are dropped instead. In a recent update of the collect protocol, a 
packet queue has been added. This will not be considered in this work however.  

Announcement packets 

When a node receives an announcement packet (received_announcement is 

called by the announcement back-end, see § 2.4.3) the following actions are 
taken:  

• The neighbor who sent out the announcement is checked against the 
neighbor table. If not yet present, the neighbor is added to the table. 
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Otherwise, the neighbor's rtmetric value is updated in the neighbor table.  

If the neighbor table is full, the worst neighbor in the neighbor table is 
evicted, and replaced by the new neighbor (see Figure 11). The worst 
neighbor is defined as the neighbor with the highest route metric to the sink. 

• The node updates its rtmetric. 

2.6 The four‐bit wireless link estimator (4B) 

The link estimator in the Contiki collect protocol bases its calculation on 
information from the data link layer only, i.e. link level acknowledgments or 
time-outs. 

The four-bit wireless link estimator (4B), proposed by Fonseca et al. [8], 
provides well-defined interfaces to combine information from the physical, data-
link and network layers for link estimation. 4B uses ETX (see § 2.3) as the link 
quality metric.  

In 4B, the interfaces provide 4 bits of information compiled from different 
layers:  

• A white bit from the physical layer, denoting the low probability of decoding 
error in received packets. If the white bit is set, the medium quality is high. 
If the white bit is not set, then the medium quality may or may not have 
been high during the packet’s reception.  
As a rule of thumb, the medium quality is considered high when the Link 
Quality Indication (LQI) of a packet is above 90%. The LQI is a 
characterization of the strength and/or quality of a received packet, as 
defined by the IEEE 802.15.4 Standard.[12] 

• An ack bit from the data link layer, indicating if an acknowledgment is 
received for a sent packet. If the bit is set, the packet was acknowledged by 
the data link layer transmission. If not set, the packet may or may not have 
been received successfully.  

• A pin bit from the network layer, indicating if the link estimator can remove 
the neighbor entry from its neighbor table or not. The network layer sets the 
pin bit for those entries that should not be removed from the table. This 
makes sense for, for example, the neighbors of the sink node: they would 
want to keep the sink in their neighbor table at all cost. 

• A compare bit from the network layer, indicating if the metric value of the 
neighbor from which a packet was received is better – i.e. lower – than the 
metric value of one or more entries in the neighbor table. If the bit is set, the 
network signals that the path through that neighbor is better than a path 
through at least one neighbor in the neighbor table. 

Figure 12 shows 4B mapped to the Rime protocol stack. 4B is typically 
represented by a triangle to indicate the three layers that it utilizes. 
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Figure 12 – 4B mapped to the Rime protocol stack 
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3 Implementation of 4B 

In this section we will look at the operation details of the 4B estimator, show 
how it is different from the collect estimator, and discuss some Contiki 
implementation notes. A modified reliable unicast Rime primitive will also be 
introduced to correct for a flaw in the current reliable unicast Rime primitive. 

3.1 Where does 4B fit in? 

As outlined in § 2.5.1, the Contiki collect protocol is made up of a number of 
high level components: neighbor discovery & management, link estimation and 
routing. 

The implementation of 4B will impact the first two components (neighbor 
discovery & management and link estimation). The routing component will be 
kept identical for the 4B implementation. 

3.2 The 4B hybrid estimator algorithm 

The 4B link estimator that will be implemented in the Contiki collect protocol is 
based on the 4B TinyOS implementation (see [17], [18] and [19]).  

The 4B link estimator described in the 4B paper[8] and also implemented in 
TinyOS is a hybrid link estimator: to calculate the link quality it combines the 
information provided by the three layers with periodic beacons (i.e. broadcast 
packets without any payload).  

Table 3 outlines the high-level differences between the original Contiki collect 
estimator and the 4B estimator. 

Table 3 – High-level difference between the link estimator in the Contiki collect 
protocol and the 4B estimator 

 Contiki collect protocol 4B 

Uses data packets 
to: 

• Estimate bidirectional link quality 
(using ACK/time-out) 

• Estimate bidirectional link quality 
(using ACK/time-out) 

• Report metric value  
(however: not implemented) 

Uses beacons/ 
announcements to: 

• Broadcast presence  
(to populate neighbor table) 

• Report metric value (for routing) 

• Broadcast presence  
(to populate neighbor table) 

• Report metric value (for routing) 

• Estimate link quality (inbound 
only!) 
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Figure 13 shows where each of the four bits is used in the 4B algorithm. The ack 
bit is used for sent data packets to calculate the ETX value. The pin, white and 
compare bit are all used to decide upon insertion of a neighbor in the neighbor 
table. 

As can be seen when comparing Figure 11 with Figure 13 the differences 
between the Contiki collect protocol estimator and the 4B estimator are: 

• a different neighbor eviction/insertion policy, 

• usage of data packets, in addition to beacons, to update link quality, 

• a different link quality (i.e. ETX) calculation. 
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Figure 13 – The 4B link estimator 
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3.2.1 Neighbor insertion (neighbor table management) 

See Figure 14. 

When a node receives a beacon (or data packet) from a neighbor that is not 
present in the neighbor table, and there are no more free entries, the neighbor 
is evaluated for replacing a current entry in the table: 

1. The table is scanned for the (unpinned) neighbor with the worst link quality, 
i.e. the highest link ETX value. Note that this is not the same as for the 
original Contiki collect estimator, where the worst neighbor is determined 
based on the worst path to the sink (i.e. the sum of the link ETX and metric 
value). In addition, blacklisting[12] is used, i.e. the worst neighbor has to be 
worse than a certain threshold to be evicted. 

2. If no such neighbor can be found, the white bit is used to further decide 
upon potential insertion. If the white bit is not set, indicating the radio 
quality is low, the neighbor will not be considered for insertion.  

3. If, in addition to the white bit, the compare bit is set for that neighbor, the 
neighbor will be inserted. The compare bit is reported to be set if the 
neighbor’s metric value is better (i.e. lower) than a neighbor already in the 
table. If the compare bit is not set, the neighbor will not be inserted. 

4. Finally, when the neighbor has been selected for insertion, the algorithm 
evicts a random, unpinned entry. 

Note the difference with the Contiki collect protocol estimator, where the worst 
neighbor was calculated as the neighbor with the worst path to the sink, i.e. the 
neighbor with the highest sum of the link ETX and metric value. 

For 4B, the worst neighbor is first evaluated based only on the link ETX values. 
The metric value is only taken into account later using the compare bit. The 
reason for this split evaluation, is because of the strict interfaces that are 
proposed by 4B. Strictly speaking, the link ETX value is only known by the link 
estimator, whereas the metric value is part of the routing logic, and thus only 
known by the network layer. 

 

Figure 14 – The 4B link estimator – neighbor insertion 
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3.2.2 Link quality calculation 

See Figure 15. 

Before being combined, the ETX values are separately calculated for the sent 
unicast packets and received beacons.  

• The unicast ETX value is updated every kuw unicast packets. kuw is called the 
unicast update window. 
If a out of kuw packets are acknowledged by the receiver, the unicast ETX 
estimate is  

 

€ 

ETX =
kuw
a  (eq. 2) 

If a = 0, then the estimate is the number of failed deliveries since the last 
successful delivery. 

• The beacon ETX value is updated every kbw beacons (of which some might be 
missed). kbw is called the beacon update window.  
The calculation is similar, but involves an extra step. First the packet 
reception ratio (PRR) is calculated based on the number of received beacons 
Rb and failed beacons Fb. 

 

€ 

PRRlast =
Rb

Rb + Fb
 (eq. 3) 

This instantaneous PRR value is dampened using an exponentially weighted 
moving average (EWMA) function:  

 

€ 

PRRnew =α × PRRold + (1−α) × PRRlast  (eq. 4) 

with alpha being a weighting factor between 0 and 1. 
The resulting PRR value is then inversed to turn it into an ETX value. 

 

€ 

ETX =
1

PRR  (eq. 5) 

• These two streams of ETX values are combined in a second EWMA: 

 

€ 

ETXnew =α × ETXold + (1−α) × ETXlast  (eq. 6) 

 

Figure 15 – The 4B link estimator – link quality calculation 
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Figure 16 illustrates an example calculation (source [8]) for a unicast update 
window kuw=5 and beacon update window kbw=3. The alpha weighting factor is 
0.5. Incoming packets are light boxes, dropped packets are marked with an ‘x’. 
The link estimator calculates link estimates for each of the two estimators at the 
times indicated with vertical arrows. 

 

Figure 16 – Example hybrid ETX calculation (source: [8]) 

3.3 Implementation notes 

• Interface vs. estimator logic – The four-bit wireless link estimation paper 
by Fonseca at al.[8] proposes a strictly defined link estimator interface 
consisting of 4 bits; the paper then evaluates the performance of a hybrid 
estimator using these interfaces (as described in § 3.2). 

In this work, the hybrid estimator logic has been implemented but not with 
the strict layer separation due to time constraints. For performance 
evaluation of the 4B hybrid link estimator logic, the absence of the strict 
layering is not a problem.  

• Announcement primitive vs. broadcasting – The original Contiki collect 
estimator uses the announcement primitive (see § 2.4.3) to broadcast the 
metric value. In the 4B implementation, we have chosen not to reuse the 
announcement primitive for broadcasting beacons, but instead write a 
dedicated beacon broadcasting mechanism using the broadcast Rime 
primitive (see Figure 8). 

• Location of broadcasting logic – The 4B beacon broadcasting mechanism 
is implemented as part of the link estimator module. Since the beacons are 
also used for broadcasting routing information (the metric value), one could 
argue that the broadcasting mechanism should be part of or at least 
controlled by the collect protocol, i.e. the network layer. However, to restrict 
changes to the collect module, broadcasting has been implemented in the 
link estimator. 

• Data link layer (runicast) changes – The Contiki collect protocol builds on 
the underlying reliable unicast (runicast) Rime primitive (see Figure 8) to 
send its data packets. The reliable unicast primitive requires a ’maximum 
number of transmissions’ parameter when sending a packet. The reliable 
unicast only reports to the collect layer when the packet has been ACK’ed or 
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when the maximum number of transmission has been reached (i.e. a time-
out).  
The 4B estimator, however, requires reporting of an acknowledgment or 
absence thereof after each packet (re)sent. Thereto, the reliable unicast 
primitive had to be changed to support notifying the link estimator upon 
each individual ACK or time-out. 

• ETX vs. EETX – The 4B TinyOS implementation internally represents the link 
quality as extra expected number of transmissions (EETX). So, an optimal 
link has a link quality of EETX=0, corresponding to one transmission 
(ETX=1).  
In the 4B Contiki implementation regular ETX values have been used instead 
of EETX values. 

• WHITE BIT (LQI) – For the CC2420 radio, present in the Sentilla Jcreate 
motes used at VUB, the white bit is set when the Link Quality Indication 
(LQI) of a packet is above 105. The LQI is a characterization of the strength 
and/or quality of a received packet, as defined by the IEEE 802.15.4 
Standard.[12] The LQI value range is specified[12] to be from 0 – 225. 
However, the range of LQI returned by the CC2420 radio is from 50 to 
110[16]. So a packet with an LQI value greater than 105 indicates a link 
quality better than 90%.  
In Contiki, the LQI can be queried directly through a sensor interface call. 

• PIN BIT – In the 4B TinyOS implementation, a neighbor is pinned in two 
cases: (a) if the neighbor is the sink node, or (b) if the neighbor is elected as 
parent (when a new parent is chosen, the old parent is unpinned). This 
prevents the parent or sink from being removed from the neighbor table (see 
Figure 14). 
In the 4B Contiki implementation, the pin bit logic is not explicitly 
implemented (i.e. no arbitrary neighbors can be pinned by the collect 
protocol). However, the parent neighbor is prevented from being evicted. 

3.4 Rewrite of the Rime reliable unicast primitive 

3.4.1 The problem 

As mentioned in § 3.3, the Contiki collect protocol uses reliable unicast 
(runicast) to send its packet to a single-hop neighbor (see also § 2.4.2).  

It turned out that the default runicast implementation is inherently flawed in 
reporting the number of required transmissions to the upper layer primitive 
(collect, in our case). This value is critical however to correctly evaluate the 
performance of both link estimators. Therefore, reliable unicast had to be 
rewritten to support correct (re)transmission count reporting.  

The reason for the flaw is the way in which runicast builds on stubborn unicast 
(stunicast) to deliver its packets reliably (see Figure 17). 

The stunicast primitive sends and resends the packet until the upper layer 
primitive (runicast) cancels the transmission. Stunicast reports to runicast each 
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time it has (re)sent the packet. Based on this reporting, runicast will let 
stunicast continue sending, or, if the maximum number of transmissions has 
been reached, will instruct stunicast to cancel the repeated sending and report a 
time-out to the upper layer primitive (e.g. collect). 

This interaction is flawed, and makes it for example possible for runicast to both 
report a time-out and an acknowledgment to the upper layer primitive. This is 
easy to illustrate if we consider a packet that has to be sent reliable with a 
maximum transmission count of 1: 

1. Runicast will instruct stunicast to start sending the packet. 

2. Stunicast will send the packet, schedule the next resend, and report the send 
to runicast. 

3. Since runicast keeps track of the maximum number of transmissions (i.e. 1), 
and since this value has now been reached, it will instruct stunicast to cancel 
any subsequent sends. Runicast will report a time-out to the upper layer 
primitive (collect) because the maximum number of transmissions has been 
reached.  

4. However, the packet that was sent might by now be ACK’ed. So, runicast will 
now also report an ACK to the upper layer primitive, while it has already 
reported a time-out! 

The reason for this bug is that the reporting from stunicast to runicast about the 
sent packet is too late. Stunicast should report to runicast just before resending, 
so that runicast can cancel the pending resent in case the maximum 
transmission count has been reached. 

3.4.2 The solution 

To overcome this bug, I rewrote the runicast primitive while getting rid of the 
reliance on stunicast. I’ve called the new implementation brunicast (a ‘better 
runicast’) and modified the collect protocol to use it. 

  
 

Figure 17 – The brunicast (better runicast) primitive that replaced the flawed 
runicast and stunicast primitives 
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The brunicast primitive schedules an evaluation instead of a resend. If an 
acknowledgment packet is received before the evaluation function has been 
called, the scheduled evaluation is canceled, and the acknowledgment is 
reported to the upper layer primitive. If no acknowledgment comes in, the 
evaluation function is called when the timer expires. Upon evaluation, the packet 
is either resend if the maximum transmission count has not yet been reached, or 
a time-out is reported to the upper layer primitive in the other case.  

I’ve submitted brunicast to replace runicast and stunicast in the official source 
tree. 
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4 Evaluation of 4B 

In this section we will put forward the foundations for comparing the 
performance of the 4B link estimator and the Contiki collect link estimator. We 
will define a number of metrics for comparing both estimators and evaluate the 
estimators through a simulation in Cooja, Contiki’s network simulator. At first 
sight, 4B and collect appear to perform similarly; however, no general 
conclusions can be drawn form these experiments since the number of 
simulations was too limited and since a varying radio link quality cannot be 
simulated in Cooja. 

4.1 Introduction 

The 4B paper[8] claims that their ‘link estimator design with these interfaces [..] 
reduces the packet delivery costs by up to 44% over current [i.e. anno 2007] 
approaches and maintains a 99% delivery ratio over large multi-hop testbeds.’  

Since Contiki only has one collection tree protocol (i.e. the Contiki collect 
protocol) and corresponding link estimator implemented, 4B will be evaluated 
against the Contiki collect protocol link estimator (from here on referred to as 
‘collect’). 

To evaluate 4B, two issues have to be addressed: 

• how will 4B be evaluated, i.e. which metrics will be used, 

• what parameters and conditions will be chosen to evaluate 4B? 

4.2 Evaluation metrics 

Different metrics can be chosen to evaluate 4B against collect. Depending on the 
application requirements, one or more metrics might be more or less relevant. 

We will evaluate 4B using the following metrics: 

• Packet delivery cost (PDC) – The PDC is defined as the total number of 
packets transmitted for each data message received by the sink: 

 

€ 

PDC =
txtotal

msgrx,total
 (eq. 7) 

The PDC is an important metric, since higher PDC values translate to higher 
energy consumption in the network, ultimately shortening the network 
lifetime. 

In the optimal case, the PDC will be lower bound by the average depth of the 
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network, since each message needs to be transmitted at least once for each 
hop. In reality the PDC will be higher because link-level retransmissions will 
occur, and because both estimators incur an overhead by sending out 
beacons/announcements. The difference between the average depth and the 
PDC is indicative of the quality of the links chosen[8]. 

• Delivery ratio (DR) – The DR is defined as the number of messages 
received by the sink over the total number of messages sent in the network. 

 

€ 

DR =
msgrx,total
msgtx,total

 (eq. 8) 

A high delivery ratio indicates a reliable network. 

• Memory footprint – As mentioned before (§ 2.2), WSN applications should 
have a memory footprint that is as low as possible. A protocol or estimator 
that requires less memory, both ROM and RAM, will be more advantageous 
for certain deployments.  

• Complexity – Less complex algorithms have a number of benefits: they will 
usually have a smaller code size, are easier to implement, are easier to 
understand, and protocol errors are easier to spot. We will see later which 
metrics can be used to evaluate the complexity of code. 

More metrics can be defined, such as the rate at which the routing tree can 
adapt to dynamic behavior of the network, or the degree in which the routing 
tree is balanced. Only the above-mentioned metrics will be considered however. 

4.3 Simulation 

4.3.1 Evaluation methods 

Evaluation of a network protocol can be performed on a network simulator 
and/or on a live testbed. The initial goal was to (a) first evaluate on the Cooja 
simulator that comes with Contiki (see § 2.4.1) and (b) then evaluate the results 
on a live testbed of Sentilla nodes at the VUB.  

Because of time constraints, only some initial evaluations were performed with 
the Cooja simulator. No collect experiments were performed on real nodes. 

4.3.2 Parameters influencing the evaluation/simulation 

Many parameters influence the performance of an algorithm or protocol. These 
parameters are both protocol parameters as well as network properties such as 
node density and average tree depth. 

Although some research projects consider a default or typical wireless sensor 
network as a large-scale ad hoc, multi-hop, unpartitioned network [15], in reality 
many variations exist depending on the application of the WSN.[14] This makes it 
difficult to establish the many parameters for evaluation.  
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In Table 4 an overview is given of the parameter values used during evaluation, 
including a short explanation on the reason for doing so. The column labeled ‘4B 
paper’ lists the parameters settings used in the 4B paper. If applicable the 
TinyOS 4B implementation value is mentioned as well. 

Table 4 – Simulation parameters 

Parameter collect 4B 4B paper[8] Justification 

General:     

• Live testbed N/A Mirage & 
TutorNet  

N/A 

• Radio model UDGM 
(Unit Disk Graph Medium)  

N/A (live 
testbeds) 

The UDGM radio model allows 
for the easiest setup of the 
simulation and seems 
sufficient for our purpose. 

• Running time 720 sec 40-69 minutes 
& 

3 to 12 hours 

The simulation was run until 
the PDC and DR values 
stabilized sufficiently (see 
Figure 22). 

• Number of nodes 9 (3x3 grid)  
-> avg tree depth = 2.25 

85 – 96 
(avg tree depth = 

1.5 – 3.5) 

The number of nodes has 
been kept small to avoid long 
simulation times. 

• Scattering of 
nodes (average 
neighbor count, or 
node density) 

Neighbor count:  
4 neighbors  

(tx range =30 m ) 

Interference: 
12 neighbors 

(range = 50 m) 

? No ‘typical’ neighbor count 
was found in WSN literature. 
The used values seem to 
provide a good balance 
between interference and 
transmissions. 

• Transmission and 
reception success 
rate 

100% N/A For initial simulations it seems 
wise to not yet introduce 
random reception rates. 

• Data send rate 12 sec +- 50% ‘a constant-rate 
stream of 
packets’ 

Information on ‘typical’ WSN 
data rates was not found. For 
example: ([10], 40) categorizes 
networks as high traffic load 
and medium traffic load 
networks, but without exact 
quantification. 

12 seconds seems a 
reasonable value. 

• Data payload 6 bytes ? Sensor data will have small 
payloads. 

• Data initiation (i.e. 
who sends data) 

All nodes except the sink ‘Each node 
[expect the sink]’ 

This seems ‘typical’ for WSNs. 
Alternatively, leaf nodes might 
generate more messages. 

• Beacon send rate 
(beacon interval) 

start: 6 sec 

max: 6 sec 
(sends 
using 

ipolite, see 
§ 2.4.3) 

6 sec+-50% ? The beacon rate has to be 
higher than the data send rate 
(to justify the use of 
beacons). 

• MAC protocol Nullmac CSMA-based Nullmac (a pass-through MAC 
protocol) was chosen because 
it does not complicate matters 
(as e.g. XMAC would). 
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Parameter collect 4B 4B paper[8] Justification 

• Brunicast # 
retransmissions 
(=link-level) 

3 ? 

• Brunicast 
retransmission 
timer  
(=link-level) 

1 sec  
with binary increase 

? 

Should be so that the total 
retransmission time is smaller 
than the collect send period. 
Otherwise the next packet will 
already be sent by the collect 
layer and thus dropped if a 
retransmission is going on 
(collect doesn’t provide 
buffering yet).  

For a binary increasing timer, 
3 transmissions result in a 
maximum of 1+2+4=7 
seconds, which is smaller than 
the collect send period. 

Neighborhood table management: 

• Table size 3 10? Take 3/4 of number of 
neighbors (4) to simulate 
small table size 

• Maximum age ca. 120 seconds ? N/A (since not dynamic) 

• Beacon window 
(BLQ_PKT_WINDOW) 

N/A 3 3? 

(TinyOS value=3) 

The ETX value should be 
updated frequently enough 
during the simulation run time 
(360 seconds).  
For a beacon send rate of 6 
seconds, this gives an average 
update of the ETX value every 
18 seconds.  

• Data window 
(DLQ_PKT_WINDOW) 

N/A 3 2? 

(TinyOS value=5) 

The ETX value should be 
updated frequently enough 
during the simulation run 
time.  
For a data send rate of 12 
seconds, this gives an average 
update of the ETX value every 
36 seconds.  

• Eviction threshold 
(EVICT_ETX_THRESH
OLD) 

N/A 5.5 ? 

(TinyOS 
value=5.5) 

TinyOS value 

• Radio quality 
threshold 

N/A high  
(i.e. white 

bit set) 

? 

(TinyOS value: 
LQI >105) 

See the remark on radio link 
quality below this table. 

• Alpha (EWMA) N/A 0.9 0.5? 

(TinyOS 
value=0.9) 

TinyOS value 

 

Remark on radio link quality: Cooja currently cannot simulate variations in 
radio link quality. This has serious implications for evaluating 4B using Cooja, 
since the 4B estimator uses the radio link quality to decide upon insertion of a 
neighbor in the neighbor table (see § 3.2.1). For the simulation, the radio link 
quality has been simulated to be high for each transmission. 
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4.3.3 Setup and processing of the information 

• Data generation process – A small Contiki data generation process is 
written that generates a data packet with payload size and data rate as 
specified in Table 4. 
The node is compiled as a sky node (make TARGET=sky). Two versions of 
the node are created: a version with the collect estimator active and a 
version with the 4B estimator active. 

• Cooja setup – In Cooja, nine nodes are arranged in a 3x3 grid. Node 1 in 
the upper left corner is designated as the sink node. To achieve the node 
scattering as specified in Table 4 the transmission range is set to 30 m, and 
the interference range is set to 50 m. See Figure 18. 

 

Figure 18 – Evaluation setup 

• Logging - Each node periodically logs, among other things, the following 
data just before sending a message (see Figure 19): node address, parent 
address, route metric, number of transmitted messages, number of received 
messages (different from zero for sink node only), number of transmitted 
packets and number of forwarded packets. 

Legend:

interference range

transmission range

node number1
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Figure 19 – Information logging 

• Extracting PDC and DR – The logged information is collected in a single 
file, which is then analyzed by a self-written Java ‘extractor’ utility. The 
extractor utility determines for each log entry the current total sum of 
transmitted and received packets and messages. These values are then used 
to calculate the current packet delivery cost (PDC) and delivery ratio (DR).  

Because of the distributed logging, the calculated PDC and DR values will 
usually be too high. The reason is as follows. To calculate the total number of 
transmitted packets at a certain entry in time, the log is searched backward 
from that time entry for the last log entry of each node, until all nodes are 
found.  

For example, in Figure 19 the entries are marked that will be used to 
calculate the situation at time entry 369474. The entry of node 6 at time 
356198 is ignored since node 6 was already encountered at time entry 
369474. The received message count is taken solely from the sink (i.e. node 
1, marked in a darker color). This received message count will probably be 
too low at time entry 369474, since more packets will have been transmitted 
by then, at a minimum by the nodes 8 and 6, and thus potentially received 
by the sink node.  

Therefore, a lower error bound is calculated based on the time difference ∆t 
between the first (node 7) and last entry (node 6), and the average number 
of messages and beacons sent in that time interval.  

The following formula shows the equation to calculate the PDC lower error 
bound. The DR lower error bound is calculated similarly.  
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€ 

PDCmin =
txtotal −ΔtxΔt

msgrx,total + Δmsgrx,Δt
=

txtotal − n × Δt
Tdata

+
Δt

Tbeacon

 

 
 

 

 
 

 

 
 

 

 
 

msgrx,total + n × Δt
Tdata

 

 
 

 

 
 

 (eq. 9) 

with: 

∆t the time interval over the entries,  

Tdata and Tbeacon the data and beacon send rates (see Table 4), 

n the number of nodes in the network. 

The PDC and DR lower error bound is shown in Figure 22 for collect. 

4.3.4 Simulation results 

Only limited time was available for doing a number of simulation experiments. 
The following results are preliminary and are not (and should not be) used to 
make general conclusions. All graphs are taken from the same simulation run 
(i.e. with the same random seed). 

4.3.4.1 Resulting collection tree 

Figure 20 shows the resulting routing tree of both link estimators. The routing 
metric value (shown inside the node) is, for all but one node, higher for 4B. This 
seemed to be the general trend when performing a number of other simulation 
runs.  

For the 100% transmission and reception success rate that was used in the 
simulation (see Table 4), one would expect the routing metric values to be equal 
to the number of hops from the sink. After all, each packet that gets sent arrives 
at the destination. However, it appears that retransmissions do take place, due 
to timing problems. This is further explained in § 4.3.4.3. 

 
 

Figure 20 – Final collection routing tree after 720 seconds 
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4.3.4.2 Node metric evolution 

Figure 21 shows the evolution of the route metric value (i.e. the depth of the 
node in the tree) of each node. 4B exhibits a more dynamic behavior, with route 
metric values rising and falling periodically. The collect route metric values 
change more gradually. It has not been investigated what causes this behavior 
or what the potential implications are. 

 

Figure 21 – Node metric evolution during the simulation 
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Figure 22 – PDC and DR 
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Figure 23 – Retransmission count 

 

Figure 24 – Bad ACK count 
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If the message reception rate is more or less constant, then the only reason that 
the number of link-level retransmissions increases is because acknowledgments 
are not delivered in time. This is indeed the case. Figure 24 shows the bad ACK 
count, which is the number of unexpected ACK packets that has been received. 

Figure 25 illustrates how this can happen. An unexpected ACK occurs when the 
transmitting node A decides to resend the packet (because it has not yet 
received an ACK from node B), then receives an ACK in response to the previous 
packet sent, and finally receives an ACK for the resent packet. This last ACK is 
an unexpected or bad ACK (since the packet was already acknowledged).  

This behavior occurs because the link-level retransmission period is too small. 
By default, this period is set to 1 second. In simulations were this period was 
increased to 2 seconds, the number of bad ACKs was lower.  

In other simulation runs, the situation was inversed: the bad ACK count 
increased for 4B instead of collect. It has not further been investigated why this 
is the case. 

 

Figure 25 – How bad ACKs occur at link-level 
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4.4 Evaluation 

4.4.1 Packet delivery cost (PDC) and delivery ratio (DR) 

The PDC and DR results were discussed in § 4.3.4.3. As mentioned, collect 
performed better initially but ultimately worsens to converge to 4B’s 
performance. This shows that the implemented 4B link estimator is functional, 
but unfortunately the limited simulations do not allow drawing quantitative 
conclusions. 

4.4.2 Memory requirements 

Memory requirements can be split up in static memory (ROM) and dynamic 
memory (RAM) required. 

4.4.2.1 Static memory required 

If we compare the compiled file size of a node with either collect or 4B included 
(Table 5), we see that 4B requires almost 12 kilobytes more memory. 

The comparison is a bit unfair however, since 4B has its own beacon-sending 
module but still has the Rime announcement primitive included. 4B’s compile 
size could be optimized by using the announcement primitive as well. 

Table 5 – Static memory requirements 

 Collect 4B 

Compiled file size 370.611 bytes 382.589 bytes 

4.4.2.2 Dynamic memory required 

The dynamic memory required is determined by the neighbor table fields and 
the number of neighbors. Since the number of neighbors depends on the 
deployment, it is important that the fields consume as little memory as possible. 

As we can see in Table 6, both memory requirements are more or less on par. 
Whereas the collect approach has less fields than 4B, the ETX history table 
(etxs[8]) takes up a lot of space. For a hypothetical node with 10 neighbors, the 
difference would be about 20 bytes, which is negligible. 

However, there is potential to reduce the memory requirement of the collect 
estimator by replacing the 8-history ETX table with the EWMA-approach of 4B 
(see § 3.2.2). This would require storing only an 8-bit ETX value, leaving the 
collect estimator happy with a total of only 48 bits per neighbor entry (instead of 
112 bits). 
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Table 6 – Dynamic memory requirements, in number of bits per neighbor 

Table field Collect 4B 

*next  
(pointer to next table record) 

16 bits 16 bits 

addr 2*8 bits 2*8 bits 

rtmetric 8 bits 8 bits 

etxptr 8 bits - 

etxs[8] 8*8 bits - 

beac_lastseq - 8 bits 

beac_rcvcnt - 8 bits 

beac_failcnt - 8 bits 

beac_init_entry - 1 bit* 

beac_inquality - 8 bits 

data_success - 8 bits 

data_total - 8 bits 

data_eetx - 8 bits 

pinned - 1 bit* 

TOTAL (per neighbor) 112 bits 98 bits 

* When stored in memory, a 1-bit field will always occupy 8-bits. For two 1-bit fields this 
would sum up to a total of 112 bits for 4B. However, it is possible to combine multiple 1-
bit fields into an 8-bit field to save memory. The resulting total memory requirement will 
then be 96+8=104 bits.  

4.4.3 Complexity 

It is hard to define a good metric to quantify the complexity of both estimators. 
We consider the following two soft-metrics: 

• Parameter count – It seems fair that an algorithm can be considered less 
complex if it requires less parameters to be set or tuned. As was already 
clear from Table 4, 4B requires a number of extra parameters over collect: 

• beacon update window 

• (data) unicast update window 

• eviction threshold 

• radio quality threshold (i.e. white bit) 

• max packet gap (before update new beacons) 

• (EWMA alpha) 

The EWMA alpha parameter corresponds more or less to the number of ETX 
history entries that is kept for each neighbor in the collect estimator. 

• Protocol logic – When comparing the link estimator logic of collect (Figure 
11) and 4B (Figure 13), it is clear that the collect estimator is more simple 
and easier to understand. 

Both points are proved in practice. Choosing the 4B simulation settings (as e.g. 



46  4 - Evaluation of 4B 

Table 4) was not easy, especially in absence of real network properties such as 
required or average data send rate. Also, due to the complexity of 4B, its 
implementation required painful debugging and verification of its operation 
under various scenarios. 

So, it seems reasonable to consider 4B more complex than collect. 

4.5 Conclusion 

From the limited evaluations performed in this section, it cannot be concluded 
that the 4B estimator performs better, or worse, than the collect estimator. 

The number of simulations performed to evaluate the packet delivery cost of 4B 
are too limited and not representative and conclusions cannot be drawn from 
them. Moreover, the Cooja network simulator currently does not provide radio 
link quality simulation, which limits the scope of the simulation as well. 

Both estimators are on par with each other what concerns memory 
requirements. 4B however, is more complex than collect. This potentially results 
in an increased code size and implementation bugs. 
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5 Thesis evaluation 

In this section a short overview is given on the actions taken while working on 
this thesis, and of the problems encountered during this work. 

5.1 Thesis progress 

The following paragraphs give a brief summary on the progress and actions 
taken while working on this thesis. 

During September-October-November I took up C programming, installed 
Contiki/Cooja, and created an ‘how to install’ tutorial in the progress (see § 8.1). 
I played around with simple Contiki ‘Hello World’ programs, and simple 
broadcasts to neighbors. 

During February-March I read up on relevant papers, studied the Rime 
protocol stack, analyzed how 4B could be mapped on the Rime stack and studied 
the high-level workings of the collect protocol. I played around with Sentilla 
nodes (uploading and running simple programs), creating a tutorial in the 
progress (see § 8.2). Unfortunately, this work turned out to be in vain since the 
4B implementation was not tested on real Sentilla nodes in the end. 

During April-May, I studied (and documented) the details of the Contiki collect 
protocol, studied the details of the TinyOS 4B implementation, implemented 4B 
in Contiki, studied the workings of the announcement module, evaluated my 4B 
implementation, wrote some Java tools to simplify evaluation data processing, 
and wrote this document. 

5.2 Problems encountered 

Progress for thesis was slower than I had anticipated. I attribute this to the 
following issues:  

• Documentation – The Contiki operating system is a young and fast-moving 
project. As a result, documentation (source-code and otherwise) isn’t always 
as expected. Sometimes it is outdated, a lot of times it is very limited or 
missing. This makes it time-consuming to get up to date with the available 
features, how to use them, and in general to ‘dive into the code’. 

• C knowledge minimal – My knowledge of the C programming language 
was theoretical, at best. Getting comfortable with the confusing syntax for 
pointers to structs, functions and all-other-things-in-the-universe took some 
time. 
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• Continuously patched – The Contiki source code is continuously extended 
and patched. While this is in general a good thing, it can slow down progress 
if the bug fixes affect my own modified code, which then has to be re-
evaluated as well. 

• Quite some bugs – The number of bugs I encountered (see § 8.5) made 
me be very critical about all lines of code I investigated. This makes for 
slower progress than if one has more confidence on the code; on the positive 
side, it makes for better code! 

• Cooja – The documentation of Cooja is also lacking to non-existing. It is 
difficult to get a view on the features and on how to use Cooja in the most 
appropriate way possible. Also, it appears that some ‘essential features’ are 
not yet available (like directly logging to a file). This resulted in putting work 
in writing some tools and extensions to make up for these missing features. 

• 4B paper – The 4B paper[8] was less explicit and clear about the exact 
estimator implementation than we had assumed. This required studying the 
TinyOS implementation to get all the required details of the algorithm.  

However, it is undoubtedly in a large part due to these problems encountered 
that the work became interesting and challenging! 
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6 Conclusion and further work 

6.1 Conclusion 

The initial goal of this work was to implement the four-bit wireless link estimator 
(4B) in the Contiki data collection protocol, followed by an evaluation against the 
current Contiki link estimator. The reason for this was twofold:  

• validate or refute the proclaimed results of 4B, 

• improve the Contiki collection protocol by including a better link estimator. 

It was realized however that the implementation details of 4B were not clear 
from the paper alone and that the time frame was not sufficient for a full 
implementation and evaluation in Contiki.  

First, the Contiki collect protocol was studied and described in detail, since it is 
the link estimator in this protocol that has to be replaced by the 4B estimator. A 
detailed study of the 4B TinyOS implementation was required to uncover all 
details of 4B. Following this work, the 4B estimator has been documented in 
detail. 

Building on this theoretical study, we investigated which metrics can be used to 
evaluate the performance of both link estimators. To evaluate the packet 
delivery cost of both estimators, we set out the conditions under which a 
simulation can take place, and performed some initial simulations. These 
simulations were too limited to reveal any useful results.  

Regarding other metrics, we showed that the memory footprint of 4B is similar 
to the memory footprint of the current collect link estimator. The 4B estimator 
does have a higher complexity, potentially leading to a more complex 
parameter-tuning problem. 

6.2 Further work  

As a direct follow-up to this work the following are obvious suggestions for 
further work:  

• Implement 4B in Contiki with a stricter separation from the current 
collection protocol. 

• For evaluation in Cooja, it is required that varying radio link quality can 
be simulated. This should be implemented in Cooja. 

• Perform a thorough evaluation of this implementation, both in Cooja and on 
a live testbed. 
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6.3 Other suggestions 

Not strictly related to the initial goal of evaluation of 4B, the following is a list of 
ideas that I would have liked to implement but that have ended up here due to 
lack of time: 

• It might be interesting to replace the ETX-history table in the current collect 
estimator with an EWMA implementation and evaluate its performance. The 
EWMA approach has the benefit of requiring less memory (see § 4.4.2.2). 

• Currently the number of link-level retransmissions in the reliable unicast 
Rime primitive is, once specified, fixed. It seems worthwhile investigating if 
dynamically adapting this number according to the link quality would 
increase the delivery ratio. A simple approach would be to make the number 
of retransmissions proportional to the ETX link quality. 

• To aid in understanding and debugging network stack issues, it would be 
helpful if a tool or Cooja plug-in would be available that would take the data 
from the Cooja log listener and visualizes it in an event diagram. Figure 26 
illustrates this idea. 

 

Figure 26 – Mockup of Cooja log visualized in an event-diagram 
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It would be useful if a Cooja plug-in existed that visualizes the collection 
tree during simulation. Nodes could be color-coded according to the route 
metric value; the link quality value and current neighbors could be indicated 
as well; a value indicating the degree in which the tree is balanced could be 
shown. 
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Figure 27 – Collection tree visualization example 
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8 Appendix 

8.1 Appendix A – Tutorial ‘Installing Contiki / Cooja on Ubuntu 
8.10’ 

This tutorial shows how to install Contiki 2.2.2 and Cooja on a fresh Ubuntu 8.10 system. There should 
be no (major) differences for Contiki 2.2.1 and/or Ubuntu 8.04.  

Don't be put off by the length of this tutorial: for clarity it lists every step. If you are proficient with *nix, 
cvs, ant and the like, you will walk through it in less than 5 minutes. If you are less experienced, it 
provides enough detail to get you up and running with Contiki and Cooja. 

Step 1: Get Contiki 
There are several options to get Contiki. An overview is available at the download page. This step 
describes two methods: (a) downloading Contiki as a zip file, or (b) checking it out from the CVS 
repository. Method b provides an easy way to stay up to date with the latest changes to Contiki. 

To continue, choose either step 1A or 1B. 

STEP 1A) downloading zip file 

1. Download Contiki from the Download page (http://www.sics.se/contiki/download.html). 

2. Unzip Contiki to (for example) your Desktop. 

STEP 1B) checking out from the CVS repository 

CVS is by default not installed on Ubuntu (typing cvs in a terminal will tell you so). 

1. Install CVS by typing:  

sudo apt-get install cvs 

2. Checkout (download) the contiki files from the CVS repository:  

cd Desktop          (or any other folder you like) 
cvs -z3 -d:pserver:anonymous@contiki.cvs.sourceforge.net:/cvsroot/contiki co contiki-2.x 

This will create a folder contiki-2.x on your Desktop. The -z3 argument is optional and 
specifies to use level 3 compression. The -d argument allows you to specify the location of 
the CVS root (an alternative would be to set the CVSROOT environment variable, consult the 
CVS man page for more information). The co argument is shorthand for checkout. The 
argument contiki-2.x is the module (i.e. folder) to be checked out from the repository.  

Remarks: 

• To keep your local copy updated with the latest changes from the CVS repository, cd into the 
folder that you want to update (either contiki-2.x or a particular subfolder) and type:  

cd contiki-2.x  (or a particular subfolder) 
cvs update -dP 

Quoting the cvs man pages: -P Prune empty directories. -d Create any directories that exist 
in the repository if they're missing from the working directory. Normally, update acts only on 
directories and files that were already enrolled in your working directory.  

• More information on the sourceforge CVS. The Contiki download page also provides a link to 
a page with more information about the Contiki CVS. 

• The next steps assume you have downloaded contiki-2.2.2 as a zip file. If 
instead you have used the CVS method to get Contiki, type contiki-2.x 
anywhere contiki-2.2.2 is mentioned. 
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Step 2:  Compile and run examples 
1. Go to the hello-world example directory:  

cd contiki-2.2.2/examples/hello-world 

2. Compile the hello world example:  

make TARGET=native 

3. Run the hello world example:  

./hello-world.native 

4. To stop the program, press Ctrl-C. 

5. If you would want to clean all temporary files created during compilation, type:  

make clean 

Remark: For more information on installation and compilation, refer to the Install and Compile page, 
and the README-BUILDING and README-EXAMPLES files in the Contiki root folder  

Step 3: Compile and run examples for the 'netsim' simulator 
To be able to run the netsim simulator, the GTK 1.x libraries are required. Thereto, install the 
libgtk1.2-dev package (and all proposed dependent packages). 

1. Click System > Administration > Synaptic Packet Manager 

2. Search for libgtk1 and mark libgtk1.2-dev for installation. 

3. Confirm the installation of the dependent packages and click Apply 

4. Compile the RIME examples:  

cd examples/rime 
make TARGET=netsim 

5. Run an example (e.g.):  

./example-abc.netsim 

The Contiki netsim simulator will now launch a window and start the simulation. 

Remark: For more information on running the Rime examples, see the tutorial 'Running the Contiki 2.0 
Rime Examples in netsim'  

Step 4: Download and install the Sun Java SDK 1.6 (and not 1.5 !), which you 
need for running Cooja. 
Cooja is the java-based simulator that comes with Contiki. The Cooja manual is currently (February 
2009) a little bit outdated and mentions that Java 1.5 is required. However, you need Java 1.6 to 
compile Cooja!  

1. Click System > Administration > Synaptic Packet Manager 

2. Search for jdk and mark sun-java6-jdk for installation. 

3. Confirm the installation of the dependent packages and click Apply 

Remarks:  

• Make sure you don't miss the pop-up dialog when installing Java, it could be hidden behind 
some other windows. 

• You can check your current active Java version using the commands:  

java -version 
javac -version 

• If you have multiple Java JDKs on your system (e.g. because you installed Eclipse), you 
might want to select Sun's JDK 1.6 with the commands:  

update-alternatives --config java 
update-alternatives --config javac 

For more information about the update-alternatives command, see the man pages 
or (for easier reading) this blog post. 
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Step 5: Compile and test Cooja 
1. Install ant  

To compile cooja, we need to install ant, a compile tool similar to the make tool that we 
have used above. If you would type ant at the command line, Ubuntu would tell you that it is 
missing and that it can be installed by typing sudo apt-get install ant. So that is 
what we'll do: 

sudo apt-get install ant 

2. Compile and start Cooja:  

1. Go to the cooja folder:  

cd tools/cooja 

2. Optional: type ant to get information about the cooja build 
3. Compile AND start the cooja simulator:  

ant run 

Remark: In Contiki 2.2.2 (but not 2.2.1) you will get some compiler warnings 
regarding "unmappable character for encoding UTF8" due to exotic developer names 
:-). I think you can safely ignore these. If someone knows how to fix this, please let 
me know. 

4. Optional: type ant clean to remove all temporary files created during compilation  

3. Execute the the Cooja JNI tests:  

1. This would be a good time to read the Cooja manual, which provides some 
background for the steps to be executed. Note that currently (February 2009), the 
manual is slightly outdated. 

2. Goto the jni_test folder:  

cd tools/cooja/examples/jni_test 

3. Open build.xml and read the information contained within. Note the part which 
says to modify exttools.cfg 

4. Replace the code in exttools.cfg with the Linux code mentioned in 
build.xml 

5. Change the line with COMPILER_ARGS to:  

COMPILER_ARGS = -I'$(JAVA_HOME)/include' -I'$(JAVA_HOME)/include/linux' 

This is necessary because otherwise the jni.h and jni_md.h files will not be 
found during compilation. The -I argument adds the specified directory to the list of 
directories to be searched for header files (see the gcc man page). 

6. At the command prompt, type:  

export JAVA_HOME=/usr/lib/jvm/java-6-sun 

to set the JAVA_HOME variable to the java directory. This is necessary because we 
introduced the variable in the COMPILER_ARGS line above.  

Remark: You will have to execute the export line after every restart of your system. If 
you don't want to do that, add the export line to your ~/.bashrc file to have this 
executed automatically upon log in. 

7. Perform the various JNI tests by typing:  

ant compile_cooja 
ant level2 
ant level3a 
ant level3b 
ant level4 
ant level5 

All of the above builds should succeed. 

4. Update the Cooja configuration  

1. Start cooja  

cd tools/cooja/ 
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ant run 

2. Update the information under Settings > External Tools Paths with 
the information from your exttools.cfg file in the example/jni_test 
folder. 

Click Save. This will put a .cooja.users.properties file in your home folder. 
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8.2 Appendix B – Tutorial ‘Getting started with Sentilla nodes’ 

This tutorial assumes that: 

• you are running Ubuntu 8.10 
• you have successfully installed Contiki on Ubuntu 8.10 (see the tutorial "Installing Contiki and 

Cooja on Ubuntu Linux 8.10"). If you are using Instant Contiki, some installation steps will be 
unnecessary. 

• you have updated to the latest CVS version (the version 2.2.2 does not yet provide out-of-the-
box support for the Sentilla nodes).  

• you have a Sentilla node at your disposal 
• you know at least how to get the "hello world" example (in /contiki-

2.x/examples/hello-world) compiled and running 

Before starting off, it is useful to know that the Sentilla nodes are the successor of the Tmote Sky 
nodes ("sky node" in the remainder of this document), which are no longer available. There are some 
obvious differences between the two nodes: for example, where the sky nodes have 3 LEDs and a 
push button, the Sentilla nodes now have 8 LEDS, an accelerometer and no more button. The current 
Contiki code provides a lot of support for the sky platform, but has not yet been fully updated to provide 
for all the features of Sentilla nodes.  

Step 1: Install the msp430 compiler 
The Sentilla nodes are, just like the sky nodes, equipped with a Texas Instrument's msp430 
microcontroller. To compile programs for this microcontroller, we need the compatible C compiler 
msp430-gcc. (This requirement is mentioned in the file contiki-2.x/README-EXAMPLES file, 
and the compiler itself is referenced in the file /cpu/msp430/Makefile.msp430.) The msp430-
gcc compiler is by default not available on Ubuntu 8.10. The packages required to support msp430 
compilation are:  

• binutils-msp430 
• gcc-msp430 
• msp430-libc 

You can check if you have these packages installed by typing: 

$ dpkg -l *msp* 

This invokes the Debian package manager (dpkg) and lists (-l) all installed packages with a name 
containing "msp". Unless you have the packages already installed (this would e.g. be the case if you 
are using Instant Contiki, in which case you can skip this whole step), the command will report "No 
packages found matching *msp*". 

The three listed packages are not available in the standard Ubuntu repository, you could easily check 
this by typing: 

$ sudo apt-get update 
$ sudo apt-cache search msp430 

Which will turn up no results. However, the website http://wyper.ca does provide the msp430 
packages. To install them, proceed as follows: 

1. Add the repository at wyper.ca which contains these packages:  

1. Click System > Administration > Software Source 
2. Click the tab Third-Party Software and click Add 
3. In the dialog box that appears enter exactly (don't forget the slash at the end!):  

deb http://wyper.ca/debian i686/  

As an alternative, we could also have manually added this line to the file 
/etc/apt/sources.list. 

2. With this repository added, verify that the msp430 packages show up if you type:  

$ apt-cache search msp430 

3. Install them by typing:  
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$ sudo apt-get install binutils-msp430 
$ sudo apt-get install gcc-msp430 
$ sudo apt-get install msp430-libc 

As an alternative, we could have installed them using System > Administration > 
Synaptic Package Manager. clicking "Reload" first might be necessary.  

Step 2: Install the Sentilla bootstrap loader and update the PATH variable 
To upload our programs (+ the Contiki OS) to the Sentilla node, we will make use of a bootstrap 
loader. Currently the Contiki repository contains a bootstrap loader for sky nodes 
(tools/sky/msp430-bsl-linux). Although both platforms share the same microcontroller, it is 
not compatible with the Sentilla nodes. You will have to replace this file with a Sentilla compatible 
bootstrap loader. Currently (February 2009), the size of the msp430-bsl-linux sky version is 68624 
bytes, whereas the size of the msp430-bsl-llinux Sentilla version is 196271 bytes. If you can't copy the 
correct file from a colleague, it is available through the Sentilla forum. 

1. Get the file tmote-bsl from the Sentilla forum site:  

1. If you haven't already done so, register yourself at the sentilla forum. 
2. Download the file SentillaWork.targ.gz mentioned in the following forum 

post: http://dev.sentilla.com/forums/viewtopic.php?f=9&t=96 
3. Untar the package (e.g. by double-clicking) and search for the file msp430-bsl-

linux in the folder SentillaWork/SentillaHostserver/bin  

2. Backup the original sky bootstrap loader in the folder contiki-2.x/tools/sky  

$ cd contiki-2.x/tools/sky 
$ mv msp430-bsl-linux msp430-bsl-linux-tmotesky 

3. Put the downloaded Sentilla bootstrap loader tmote-bsl in the folder contiki-
2.x/tools/sky and rename it to msp430-bsl-linux.  

4. Finally, add the contiki-2.x/tools/sky folder to the PATH environment variable. 
This is necessary for finding the motelist-linux script which will be invoked when 
uploading to a node:  

$ export PATH=$PATH:~/Desktop/contiki-2.x/tools/sky 

Remarks:  

o You will have to execute the export line after every restart of your system. If you 
don't want to do that, add the export line to your ~/.bashrc file to have this 
executed automatically upon log in. 

o Instead of changing your PATH variable, you could also add a link to the 
motelist-linux script in /usr/local/bin. 

This completes all installation steps. 

Step 3: Create and run the example program 'blink.c' natively 
Before we upload something to a Sentilla node, we'll first create a small program. The program does 
nothing more than making the node's LEDs blink with a period of 500 milliseconds. Because we will 
first build and run it natively, ie. we will run it on the computer instead of on the node, it also includes a 
printf statement (because most computers don't have any LEDs). 

1. Create the folder structure contiki-2.x/projects/01blink. You can name the 
folder any way you like, but make sure to have a 2-level hierarchy. 

2. In the created folder, create a file called blink.c with the following content:  

/*  
* Blink every 500 milliseconds 
*/ 
#include "contiki.h" 
#include "dev/leds.h" 
#include  
 
static int period = CLOCK_SECOND / 2; 
 
PROCESS(blinker, "Blinker"); 
AUTOSTART_PROCESSES(&blinker); 
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PROCESS_THREAD(blinker, ev, data)  
{ 
   static struct etimer et; 
 
   PROCESS_BEGIN();  
 
   etimer_set(&et, period);  
   while(1) { 
      PROCESS_WAIT_EVENT(); 
      if(etimer_expired(&et)) { 
         /* Toggle LED state */ 
         if(leds_get() == 0) { 
            leds_on(LEDS_ALL); 
         } else { 
            leds_off(LEDS_ALL); 
         }          
         printf("Is there anybody out there?\n"); 
         /* Set timer again */ 
         etimer_set(&et, period); 
      } 
   } 
   PROCESS_END(); 
} 
 

3. In the same folder, create a file called Makefile with the following content:  

CONTIKI_PROJECT = blink 
all: $(CONTIKI_PROJECT) 
CONTIKI = ../.. 
include $(CONTIKI)/Makefile.include 

Remarks: 

o Note that the contiki root path is set to CONTIKI = ../... If you didn't create the 
2-level folder structure as described above (projects/01blink), you need to 
modify this variable to have the correct number of levels. 

o The first two lines are optional, as we will see below. 
o For more information about the building processing, see the file README-

BUILDING in the contiki root folder. 

4. Build the example blink program (+ the underlying Contiki OS):  

$ make TARGET=native blink 

This will take some time. 

5. Run the resulting blink.native binary:  

$ ./blink.native 

Every 500 ms the text 'Is there anybody out there?' will be printed to the terminal. Once we 
get our program running on the node (in the next section), we'll see the LEDs blinking instead 
of the text being printed. 

6. Press Ctrl-c to terminate the program (the program runs in an infinite loop). 

Remarks: 

• In the build step, providing make with the blink argument (i.e. the source file without the 
.c extension) is optional, since that is what the first two lines of our Makefile specify. If 
instead you would leave out the first two lines of the Makefile, then the blink argument 
would be compulsory. 
Similarly, there was no need to provide make with the argument TARGET=native. If not 
specified, the Contiki build process assumes the native target. 
So, we could have just typed make at the terminal to build our binary. 

• To remove any temporary files, you can type make clean.  

Step 4: Check if you can communicate with the node 
1. Connect a Sentilla node to the programming fixture, and connect the programming fixture to 

the USB port.  
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Remarks: 

o The Sentilla node is USB powered, so you don't need to put in the batteries (there is 
no harm in doing so, though). 

o You don't need to 'turn on' the node with the switch on the side of the node; this 
switch only enables or disables battery power, which is irrelevant when being USB 
powered. 

o Depending on the location and mounting of your computer's USB connector, you 
might want to use a male-female USB cable. 

2. Check if the node (the programming fixture actually) is detected by typing:  

$ cd contiki-2.x/projects/01blink  
$ make TARGET=sky sky-motelist 

If the connection is successful you will get something similar as below:  

Reference  Device           Description 
---------- ---------------- --------------------------------------------- 
M4ASV34O   /dev/ttyUSB0     Sentilla JCreate Programming Fixture 

Remarks: 

o The command make TARGET=sky sky-motelist calls contiki-
2.x/tools/sky/motelist-linux, the command that required changing the 
PATH variable in a previous step. You could run motelist-linux directly and 
achieve the same result as calling make TARGET=sky sky-motelist. 
However it is good practice to use make TARGET=sky sky-motelist since it 
works on both Linux (automatically calling motelist-linux) and Windows 
(automatically calling motelist-windows). 

o The command motelist-linux is a Perl script and has several options. Type 
motelist-linux -h to see them. 

Step 5: Upload the example program 'blink.c' to a Sentilla node 
1. Make sure your Sentilla node is properly connected to your computer's USB port (see the 

previous step). 

2. Still in the projects/01blink folder, type:  

$ make TARGET=sky blink.upload 

Appending .upload to our program's file name will build and upload our program to the 
connected node(s). The upload will take some time and produce a lot of text. You should see 
messages like Mass erase and Program in the terminal. The build will finish with Done 
(and three extra lines). 

3. If all went well, your Sentilla node will now be flashing every 500 ms. 

4. Display the output of the node on the terminal  

Although the node is currently flashing, the printf statement that we introduced to have 
some feedback when running it natively is not entirely a waste of CPU cycles. The output of 
the printf statement is dumped to the serial connection (over USB), and we can capture it. 
Type: 

make TARGET=sky serialdump 

Your terminal will now fill with the same message, preceded with a timestamp, as we had 
when running our program natively. The output will also be logged to a timestamped file in the 
current directory. 

Remarks: 

• To avoid having to type every time TARGET=sky you can have the make command 
remember the target. To do so, type once make TARGET=sky savetarget. A file 
called Makefile.target containing the currently saved target is created in the project's 
directory. All subsequent invocations of make will use the saved target (unless overridden by 
specifying the target manually as before).  
Note that this is applicable not only to upload, but to all other make commands such as 
make sky-motelist and make serialdump, as well. 

• If you are wondering how make processes the .upload argument, check the 
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/platform/sky/Makefil.sky file. The line starting with %.upload matches the 
make arguments (the % sign represents the file name fed to make, "blink" in our example). 
This also implicates that when you use make blink.upload, the first two lines in our 
Makefile (defining CONTIKI_PROJECT, and the all: target) are completely ignored. 

• As you can see, the file Makefile.sky contains some other make macros as well, such as 
sky-motelist and sky-reset. Indeed, this is the make sky-motelist that we 
have used before to list all connected nodes. And make sky-reset will reset the node; 
resetting does not erase the program running on it. 

• The make serialdump command calls contiki-2.x/tools/sky/serialdump-
linux with the appropriate parameters (i.e. connection speed and USB device address). 
Just as with motelist-linux you could call it directly, but that would require you to 
remember the exact parameters, which is not very convenient. 

• There are two other alternatives to make serialdump worth knowing about. The 
command make serialview, which does exactly the same but does not log the traffic to 
a file. And the command make login, which does not log to a file and does not prepend a 
timestamp to each command. 

Step 6: Troubleshooting upload 
If you accidentally or on purpose run a process which consumes all CPU cycles, such as 
while(1){printf("too busy\n");}, you might run into the situation where you can not 
upload to the node anymore. During the upload, the process hangs on the message "Warning, bsl 
sync failed, retrying.". For example: 

  
$ make TARGET=sky test.upload 
 
... 
+++++ Erasing /dev/ttyUSB0 
Using mote M4ASV34O on port usb2d7. 
Given -bsl=auto using -bsl=mini 
Mass erase. 
Warning, bsl sync failed, retrying. 
Warning, bsl sync failed, retrying. 
Warning, bsl sync failed, retrying. 
... 

To get out of this deadlock situation, you can perform a manual reset (-r) and mass erase (-e) of the 
node as follows: 

$ msp430-bsl-linux --telosb -c /dev/ttyUSB0 -r -e 

You might want to check and change to your correct USB device first by running make sky-
motelist. 

Step 7: Including a shell into Contiki 
To illustrate how ready-build applications can be added to the Contiki OS, we will include a shell which 
makes it possible to interact with our operating system. The already available applications for the 
Contiki OS can be found in the folder contiki-2.x/apps. To include a shell in our OS, the 
obvious choice from looking at the folder content is the apps/shell application. However, since we 
will not only run the next example native, but also on the Sentilla node, we will instead add the 
application serial-shell (which includes the shell application). 

1. Create a folder structure contiki-2.x/projects/02shell. 

2. In the created folder, create a file called jcreate-shell.c with the following content:  

/* 
 * Simple shell example 
 */ 
 
#include "contiki.h" 
#include "shell.h"          // for shell_blink_init() 
#include "serial-shell.h"   // for serial_shell_init() 
 
/*---------------------------------------------------------------------------*/ 
PROCESS(sky_shell_process, "Sky Contiki shell"); 
AUTOSTART_PROCESSES(&sky_shell_process); 
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/*---------------------------------------------------------------------------*/ 
PROCESS_THREAD(sky_shell_process, ev, data) 
{ 
  PROCESS_BEGIN(); 
   
  serial_shell_init(); 
  shell_blink_init(); 
   
  PROCESS_END(); 
} 
/*---------------------------------------------------------------------------*/ 

3. In the same folder, create a Makefile with the following content:  

CONTIKI_PROJECT = jcreate-shell 
all: $(CONTIKI_PROJECT) 
APPS = serial-shell 
CONTIKI = ../.. 
include $(CONTIKI)/Makefile.include 

Note that we have added here the line APPS=serial-shell. 

4. Build the jcreate-shell program:  

$ make TARGET=native jcreate-shell 

Again, you can drop the jcreate-shell argument at the end of the make command, 
since the Makefile also specifies the source filename in the first line (CONTIKI_PROJECT 
= jcreate-shell). 

5. Run the resulting jcreate-shell.native binary:  

$ ./jcreate-shell.native 

We are greeted with a Contiki prompt (preceded by the address of the node, in this case 0.0), 
and we can type help to get a list of all available shell commands. For example: 

$ ./jcreate-shell.native  
Starting Contiki 
0.0: Contiki>  
help 
Available commands: 
?: shows this help 
blink [num]: blink LEDs ([num] times) 
help: shows this help 
kill : stop a specific command 
killall: stop all running commands 
null: discard input 
0.0: Contiki>  
blink 3 
0.0: Contiki>  
 

The help command told us there is a blink command available, so when we typed blink 3 
the node's LEDs would have flashed three times. Of course, since we are running this native, 
there is nothing to blink.  

The blink command is available because in our code we have, after initializing the shell itself 
(serial_shell_init()), initialized the blink command as well 
(shell_blink_init()). We could have added support for more commands, for example 
shell_ps_init() to have (a very basic version of) the well-know unix ps command 
available. See the folder contiki-2.x/apps/shell for more commands. 

6. Finally, press Ctrl-c to quit the shell. 

7. To run and access the shell on a Sentilla node, the procedure is similar:  

$ make TARGET=sky jcreate-shell.upload 
$ make login 

You will be greeted with the same shell prompt. This time the blink 3 will make the actual 
LEDs blink, and you will have been assigned an address different from 0.0.  
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Step 8: Example program 'jcreate-shell.c' 
The contiki repository comes with an example created specifically for the Sentilla nodes. It is located in 
contiki-2.x/examples/jcreate. It demonstrates the use of the built-in accelerometer and 
the 8 LEDs. To run it, type: 

$ cd contiki-2.x/examples/jcreate 
$ make jcreate-shell.upload 
$ make jcreate-blink 

(Note that we didn't had to provide the TARGET=sky argument to make, since there is already a 
Makefile.target file present in the folder that specifies to use sky as the default target.) 

After typing the last command, make sure to wait about 5 seconds, you will see that data is being sent 
to the node. The 8 LEDs will be lit according to the tilt angle of the node. 

Apparently the last make command started a program on the node. How is this done? A closer look at 
the content of Makefile makes things a bit clearer. The jcreate-blink target actually sends a number 
of commands to the Contiki shell, piped via make login (at the end of the line): 

jcreate-blink: 
 (echo; sleep 4; echo "~K"; sleep 4; \ 
         echo "repeat 0 0 { acc 1 | leds } &"; sleep 4) | make login 

The echo and sleep commands are processed by the Linux bash shell, but the ~K, repeat, acc 
and leds commands are processed by the Contiki OS running on the node:  

• The ~K command (defined in contiki-2.x/apps/shell/shell.c) terminates the 
front process, if that process is not the Shell. This makes sure that no other shell process is 
currently blocking the prompt. 

• The repeat [num] [time] [command] command (defined in contiki-
2.x/apps/shell/shell-time.c) repeats the specified command every [time] 
seconds, for [num] times. A zero [num] value repeats indefinitely, whereas a zero [time] value 
leaves no time between each successive call of the command. The command repeated by 
repeat consists in this case of the combined command {acc 1 | leds}. 

• The commands acc and leds are both defined in the jcreate-shell.c example file. 
The output of the acc 1 is the status of one particular axis (i.e. detecting roll movements) of 
the accelerator and is fed using the pipe symbol to leds, which sets the LEDs accordingly. 
To have the LEDs react to the other axis (i.e. pitch movements), use acc 0. 

• The & (ampersand) at the end of the line executes the shell command (repeat in this case) 
in the background, following the convention of using an ampersand in a unix shell.  

You can achieve the same effect as running make jcreate-blink, by connecting manually to 
the shell (using make login) and typing: 

repeat 0 0 { acc 1 | leds } & 

Once launched, running ps will list the repeat process, among others. You can terminate it by typing 
kill repeat. If you would want to update the LEDs according to the tilt of the node just once, and 
not continously, you would omit the repeat command and just type acc 1 | leds. 

Type help to get an overview of other shell commands available. As a final example, the reboot 
command will reboot the node and print some interesting information while the node is restarting:  

6.0: Contiki>  
 
reboot 
SEND 7 bytes 
Rebooting the node in four seconds... 
 
Contiki 2.2.2 started. Node id is set to 6. 
Rime started with address 6.0 
MAC 00:12:75:00:11:6e:74:a2 X-MAC 
Starting 'Sky Contiki shell' 
6.0: Contiki> 
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8.3 Appendix C – Source code brunicast 

8.3.1 brunicast.h 

/** 
 * brunicast.h, v1.0 
 * 
 * Created on: Apr 19, 2009 
 * Better reliable unicast header file, based on runicast.h v1.3 
 * 
 * brunicast is a rework of the functionality provided by runicast.c 
 * It fixes the retransmits count issue in rnuicast.c 
 * 
 */ 
 
#ifndef __BRUNICAST_H__ 
#define __BRUNICAST_H__ 
 
#include "net/rime/unicast.h" 
#include "net/rime/ctimer.h" 
#include "net/rime/queuebuf.h" 
 
/* if enabled, sending from multiple nodes to one node doesn't work correctly 
 * if disabled, packets may be reported received multiple times (if an ACK 
 *    goes missing) */ 
#define ENABLE_DUPLICATE_PACKET_CHECK 0 
 
struct brunicast_conn; 
 
#define BRUNICAST_ATTRIBUTES  { RIMEBUF_ATTR_PACKET_TYPE, RIMEBUF_ATTR_BIT }, \ 
                        { RIMEBUF_ATTR_PACKET_ID, RIMEBUF_ATTR_BIT * 2 }, \ 
                        UNICAST_ATTRIBUTES 
struct brunicast_callbacks { 
 /* Called when we have received a data packet */ 
 void (* recv)(struct brunicast_conn *c, rimeaddr_t *from, uint8_t seqno); 
 /* Called when packet we tried to send has been ACK'd */ 
 void (* sent)(struct brunicast_conn *c, rimeaddr_t *to, 
   uint8_t transmissions); 
 /* Called when packet we tried to send has timed out */ 
 void (* timedout)(struct brunicast_conn *c, rimeaddr_t *to, 
   uint8_t transmissions); 
 //Added for 4bwle 
 /* Called for *each* packet sent by brunicast */ 
 void (* ack_or_timedout_packet)(struct brunicast_conn *c, rimeaddr_t *to, 
   uint8_t acked); 
}; 
 
struct brunicast_conn { 
 struct unicast_conn c; 
 struct ctimer t; 
 struct queuebuf *buf; 
 const struct brunicast_callbacks *u; 
 /* Packet ID of next packet to send (only incremented after ACK), starts at 0 */ 
 uint8_t sndnxt; 
 /* Currently transmitting? */ 
 uint8_t is_tx; 
#if ENABLE_DUPLICATE_PACKET_CHECK 
 /* Packet ID of last received *data* packet */ 
 uint8_t lastrecv; 
#endif /* #if ENABLE_DUPLICATE_PACKET_CHECK */ 
 /* Number of transmission so far */ 
 uint8_t rxmit; 
 /* Maximum number of times a packet can be transmitted */ 
 uint8_t max_rxmit; 
 /* Address of receiver of the packet */ 
 rimeaddr_t receiver; 
}; 
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// Set up a reliable single hop unicast connection 
void brunicast_open(struct brunicast_conn *c, uint16_t channel, 
  const struct brunicast_callbacks *u); 
 
// Close a brunicast connection 
void brunicast_close(struct brunicast_conn *c); 
 
// Reliable send a packet to a single hop neighbor 
int brunicast_send(struct brunicast_conn *c, rimeaddr_t *receiver, 
  uint8_t max_transmissions); 
 
// Indicates if the brunicast layer is still transmitting 
uint8_t brunicast_is_transmitting(struct brunicast_conn *c); 
 
 
#endif /* __BRUNICAST_H__ */ 
 

8.3.2 brunicast.c 

/** 
 * 
 * brunicast.c, v1.2 
 * 
 * brunicast is a rework of the functionality provided by runicast.c 
 * It fixes the retransmits count issue in runicast.c 
 */ 
 
#include "net/rime/brunicast.h" 
#include "net/rime.h" 
 
#define BRUNICAST_PACKET_ID_BITS 2 
 
#define REXMIT_TIME CLOCK_SECOND 
 
static const struct rimebuf_attrlist attributes[] = 
  { 
    BRUNICAST_ATTRIBUTES 
    RIMEBUF_ATTR_LAST 
  }; 
 
#define DEBUG 0 
#if DEBUG 
#include <stdio.h> 
#define PRINTF(...) printf("      BRUNICAST DEBUG:  " __VA_ARGS__) 
#else 
#define PRINTF(...) 
#endif 
 
/*---------------------------------------------------------------------------*/ 
/* Increment the send next counter */ 
void 
inc_sndnxt(struct brunicast_conn *c) 
{ 
 c->sndnxt = (c->sndnxt + 1) % (1 << BRUNICAST_PACKET_ID_BITS); 
} 
/*---------------------------------------------------------------------------*/ 
/* Called by unicast each time when a packet is received. 
 * If it is an ACK packet (and correct seq no) 
 *   --> cancel sending and notify higher up primitive 
 * If it is an ACK packet (and wrong seq no) 
 *   --> do nothing 
 * If it is  a data packet 
 *   --> extract seq no, send (once!) and ACK packet back, and notify higher up 
 */ 
static void 
recv_from_unicast(struct unicast_conn *uc, rimeaddr_t *from) 
{ 
  register struct brunicast_conn *c = (struct brunicast_conn *) uc; 
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 PRINTF("%d.%d: brunicast: recv_from_unicast from %d.%d type %d seqno %.2d\n", 
   rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
   from->u8[0], from->u8[1], 
   rimebuf_attr(RIMEBUF_ATTR_PACKET_TYPE), 
   rimebuf_attr(RIMEBUF_ATTR_PACKET_ID)); 
 
 /* Check packet type */ 
 if (rimebuf_attr(RIMEBUF_ATTR_PACKET_TYPE) == RIMEBUF_ATTR_PACKET_TYPE_ACK) { 
  /* (OPTION 1) ACK packet */ 
 
  if (rimebuf_attr(RIMEBUF_ATTR_PACKET_ID) == c->sndnxt) { 
   /* correct seq no -> stop sending, and notify higher up */ 
   RIMESTATS_ADD(ackrx); 
   PRINTF("%d.%d: brunicast: ACKed %.2d\n", 
     rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], 
     rimebuf_attr(RIMEBUF_ATTR_PACKET_ID)); 
   c->is_tx = 0; 
   inc_sndnxt(c); 
   ctimer_stop(&c->t); /* stop resending */ 
   // Added for 4bwle 
   /* First notify link estimator */ 
   if (c->u->ack_or_timedout_packet != NULL) { 
    c->u->ack_or_timedout_packet(c, from, 1); 
   } 
   /* Notify higher up */ 
   if (c->u->sent != NULL) { 
    c->u->sent(c, from, c->rxmit); 
   } 
  } else { 
   /* wrong seq no -> ignore packet */ 
   PRINTF("%d.%d: brunicast: received bad ACK %.2d for expected %.2d (from 
%d.%d)\n", 
     rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
     rimebuf_attr(RIMEBUF_ATTR_PACKET_ID), 
     c->sndnxt, 
     from->u8[0], from->u8[1]); 
   RIMESTATS_ADD(badackrx); 
  } 
 
 } else if (rimebuf_attr(RIMEBUF_ATTR_PACKET_TYPE) 
   == RIMEBUF_ATTR_PACKET_TYPE_DATA) { 
  /* (OPTION 2) DATA packet 
   -> get seq no, and send once an ACK packet with same seq no */ 
 
    uint16_t packet_seqno; 
    struct queuebuf *temp_q; 
 
    RIMESTATS_ADD(reliablerx); 
 
    PRINTF("%d.%d: brunicast: got packet %.2d\n", 
    rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
    rimebuf_attr(RIMEBUF_ATTR_PACKET_ID)); 
 
    packet_seqno = rimebuf_attr(RIMEBUF_ATTR_PACKET_ID); 
 
    /* Send ACK back */ 
    /* First, put rimebuffer data temporarily in a queue 
     * buffer, so we can user rimebuffer for sending ACK */ 
    temp_q = queuebuf_new_from_rimebuf(); 
  if (temp_q != NULL) { 
   PRINTF("%d.%d: brunicast: Sending ACK to %d.%d for %.2d\n", 
     rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
     from->u8[0], from->u8[1], 
     packet_seqno); 
   rimebuf_clear(); 
   rimebuf_set_attr(RIMEBUF_ATTR_PACKET_TYPE, RIMEBUF_ATTR_PACKET_TYPE_ACK); 
   rimebuf_set_attr(RIMEBUF_ATTR_PACKET_ID, packet_seqno); 
   unicast_send(&c->c, from); 
   RIMESTATS_ADD(acktx); 
 
   /* Restore rimebuffer */ 
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   queuebuf_to_rimebuf(temp_q); 
   queuebuf_free(temp_q); 
  } 
 
  /*  notify higher up about data packet 
   * (duplicate packet dropping disabled to allow multiple nodes to send 
   * to a single node) */ 
  if (c->u->recv != NULL) { 
#if ENABLE_DUPLICATE_PACKET_CHECK 
   if (packet_seqno != c->lastrecv) { 
    c->u->recv(c, from, packet_seqno); 
    c->lastrecv = packet_seqno; /* remember last received packet */ 
   } else { 
    PRINTF("%d.%d: brunicast: Supressing duplicate receive " 
      "callback from %d.%d for %.2d\n", 
      rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
      from->u8[0], from->u8[1], 
      packet_seqno); 
   } 
#else 
   c->u->recv(c, from, packet_seqno); 
#endif /* ENABLE_DUPLICATE_PACKET_CHECK */ 
 
  } 
 
 } 
} 
/*---------------------------------------------------------------------------*/ 
/* Send the data in the queuebuffer using unicast */ 
int 
send(struct brunicast_conn *c) { 
  queuebuf_to_rimebuf(c->buf); /* get data from queuebuffer */ 
 PRINTF("%d.%d: brunicast send a packet to %d.%d using unicast\n", 
   rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
   c->receiver.u8[0],c->receiver.u8[1]); 
 return unicast_send(&c->c, &c->receiver); 
} 
/*---------------------------------------------------------------------------*/ 
/* Called each time the resend interval has elapsed. 
 * If this gets called, it means we didn't receive an ACK yet 
 * (because an ACK cancels the timer that calls this function). 
 * So, either retransmit the packet or time-out: 
 * - If the maximum number of resends has been reached, time out and notify 
 *    higher up. 
 * -  Otherwise, resend the packet and double evaluation timer (with a maximum 
 *    of 16x the original interval). */ 
static void 
evaluate(void *ptr) { 
 struct brunicast_conn *c = ptr; 
 
 PRINTF("%d.%d: brunicast: evaluating \n", 
   rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1]); 
 
 /* Check if timed out */ 
 if (c->rxmit >= c->max_rxmit) { 
  /* timed out */ 
  RIMESTATS_ADD(timedout); 
  PRINTF("%d.%d: brunicast: packet %.2d timed out\n", 
    rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
    c->sndnxt); 
  c->is_tx = 0; 
  inc_sndnxt(c); 
  // TODO better to free queuebuffer here? (otherwise, this will only 
  // be done when/if a new packet is sent) 
  // added for 4bwle 
  /* First notify link estimator */ 
  if (c->u->ack_or_timedout_packet != NULL) { 
   c->u->ack_or_timedout_packet(c, &c->receiver, 0); 
  } 
  /* notify higher up */ 
  if (c->u->timedout) { 
   c->u->timedout(c, &c->receiver, c->rxmit); 
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  } 
 } else { 
  /* rexmit time has elapsed (and not reach maximum resends 
   * -> resend (with increasing interval)*/ 
  c->rxmit++; 
  RIMESTATS_ADD(rexmit); 
  PRINTF("%d.%d: brunicast: packet %.2d resent %u\n", 
    rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], 
    c->sndnxt, c->rxmit); 
  // Added for 4bwle 
  /* First notify link estimator */ 
  if (c->u->ack_or_timedout_packet != NULL) { 
     c->u->ack_or_timedout_packet(c, &c->receiver, 0); 
    } 
  /* send packet */ 
  send(c);  
  /* set timer */ 
  int shift; 
  shift = c->rxmit > 4 ? 4 : (c->rxmit-1); //2 x interval (and maximum 16x)  
  ctimer_set(&c->t, (REXMIT_TIME) << shift, evaluate, c); 
  PRINTF("%d.%d: brunicast: next send timer set to %d seconds.\n", 
    rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], 
    ((REXMIT_TIME)<<shift)/CLOCK_SECOND); 
 } 
 
} 
/*---------------------------------------------------------------------------*/ 
static const struct unicast_callbacks brunicast = {recv_from_unicast}; 
/*---------------------------------------------------------------------------*/ 
void 
brunicast_open(struct brunicast_conn *c, uint16_t channel, 
  const struct brunicast_callbacks *u) 
{ 
 unicast_open(&c->c, channel, &brunicast); 
 channel_set_attributes(channel, attributes); 
 c->u = u; 
 c->rxmit = 0; 
 c->sndnxt = 0; 
 c->is_tx = 0; 
#if ENABLE_DUPLICATE_PACKET_CHECK 
 c->lastrecv = 0xFF; 
#endif /* ENABLE_DUPLICATE_PACKET_CHECK */ 
} 
/*---------------------------------------------------------------------------*/ 
void 
brunicast_close(struct brunicast_conn *c) 
{ 
  unicast_close(&c->c); 
 ctimer_stop(&c->t); 
 if (c->buf != NULL) { 
  queuebuf_free(c->buf); 
 } 
} 
/*---------------------------------------------------------------------------*/ 
int 
brunicast_send(struct brunicast_conn *c, rimeaddr_t *receiver, 
  uint8_t max_transmissions) 
{ 
 if (brunicast_is_transmitting(c)) { 
  RIMESTATS_ADD(bruni_tx_busy); 
    PRINTF("%d.%d: brunicast: already transmitting\n", 
        rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1]); 
    return 0; 
  } 
 
 /* Configure packet attributes and connection parameters */ 
  rimebuf_set_attr(RIMEBUF_ATTR_RELIABLE, 1); 
  rimebuf_set_attr(RIMEBUF_ATTR_PACKET_TYPE, RIMEBUF_ATTR_PACKET_TYPE_DATA); 
  rimebuf_set_attr(RIMEBUF_ATTR_PACKET_ID, c->sndnxt); 
  c->max_rxmit = max_transmissions; 
  rimeaddr_copy(&c->receiver, receiver); 
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  /* Put data in a queue buffer */ 
 if (c->buf != NULL) { 
  queuebuf_free(c->buf); 
 } 
 c->buf = queuebuf_new_from_rimebuf(); 
 if (c->buf == NULL) { 
  return 0; 
 } 
 
 RIMESTATS_ADD(reliabletx); 
 PRINTF("%d.%d: brunicast: sending packet %.2d\n", 
   rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
   c->sndnxt); 
 
 /* Send */ 
  c->is_tx = 1; 
  c->rxmit = 1;  
 int result; 
 result = send(c); 
 ctimer_set(&c->t, REXMIT_TIME, evaluate, c); 
 return result; 
} 
/*---------------------------------------------------------------------------*/ 
uint8_t 
brunicast_is_transmitting(struct brunicast_conn *c) 
{ 
  return c->is_tx; 
} 
/*---------------------------------------------------------------------------*/ 
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8.4 Appendix D – Source code 4B 

8.4.1 neighbor.h 

/** 
 * neighbor.h 
 * The neighbor module manages the neighbor table. 
 */ 
 
#ifndef __NEIGHBOR_H__ 
#define __NEIGHBOR_H__ 
 
#include "net/rime/rimeaddr.h" 
 
#if USE_4BWLE 
#include "net/rime/brunicast.h" 
#include "net/rime/collect.h" // (needed for neighbor_start) 
#endif /* USE_4BWLE */ 
 
#if USE_4BWLE 
// The etx returned is scaled by this factor. 
#define NEIGHBOR_ETX_SCALE 10 
#else 
#define NEIGHBOR_ETX_SCALE 10 
#define NEIGHBOR_NUM_ETXS 8  //Capacity of etx circular history buffer 
#endif 
 
#if USE_4BWLE 
struct neighbor { 
  struct neighbor *next; 
  uint16_t time; 
  rimeaddr_t addr; 
  uint16_t rtmetric; 
 
  /* Beacons */ 
 
  // last beacon sequence number received from this neighbor 
  uint8_t beac_lastseq; 
  // number of beacons received after last beacon estimator update 
  // the update happens every BLQ_PKT_WINDOW beacon packets 
  uint8_t beac_rcvcnt; 
  // number of beacon packets missed after last beacon estimator update 
  uint8_t beac_failcnt; 
  // Flag to indicate that this link has received the 
  // first sequence number. If 1, the link is initialized (has received a 
  // sequence number) 
  uint8_t beac_init_entry; 
  // MAXAGE-inage gives the number of update rounds we haven't been able 
  // update the inbound beacon estimator 
//  uint8_t beac_inage; //TODO wegdoen (of niet?) 
  // inbound qualities in the range [1..255] 
  // 1 bad, 255 good, 0 indicates pristine state (important for EWMA) 
  uint8_t beac_inquality; 
 
  /* Data driven */ 
 
  // Number of data packets successfully sent (ack'd) to this neighbor 
  // since the last data estimator update round. This update happens 
  // every DLQ_PKT_WINDOW data packets 
  uint8_t data_success; 
  // The total number of data packets transmission attempt to this neighbor 
  // since the last data estimator update round. 
  uint8_t data_total; 
  // ETX for the link to this neighbor. This is the quality returned to 
  // the users of the link estimator (scaled) 
  uint16_t etx; 
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}; 
#else //for original contiki collect 
struct neighbor { 
  struct neighbor *next; 
  uint16_t time; 
  rimeaddr_t addr; 
  uint16_t rtmetric; 
  uint8_t etxptr;      // current pointer in history buffer 
  uint8_t etxs[NEIGHBOR_NUM_ETXS];  // keep circular history buffer 
}; 
#endif 
 
#if USE_4BWLE 
void neighbor_set_ack_bit(struct brunicast_conn *c, rimeaddr_t *addr, 
  uint8_t acked); 
void neighbor_start(struct collect_conn *c, uint16_t channel, 
  uint16_t(*get_rtmetric)(struct collect_conn *c), void(*update_rtmetric)( 
  struct collect_conn *c)); 
void neighbor_close(void); 
#else 
void neighbor_add(rimeaddr_t *addr, uint8_t rtmetric, uint8_t etx); 
void neighbor_update(struct neighbor *n, uint8_t rtmetric); 
void neighbor_update_etx(struct neighbor *n, uint8_t etx); 
void neighbor_timedout_etx(struct neighbor *n, uint8_t etx); 
void neighbor_remove(rimeaddr_t *addr); 
#endif 
 
void neighbor_init(void); 
struct neighbor *neighbor_find(rimeaddr_t *addr); 
struct neighbor *neighbor_best(void); 
void neighbor_set_lifetime(int seconds); 
 
uint16_t neighbor_etx(struct neighbor *n); 
 
int neighbor_num(void); 
struct neighbor *neighbor_get(int num); 
 
#endif /* __NEIGHBOR_H__ */ 
 

8.4.2 neighbor.c 

Each method in the following source code listing is prepended with either //NEW, 
//CHANGED, or //IDENTICAL to indicate if the method was added to neighbor.c, 
has been changed, or was left unchaged respectively. 

 
/* 
 * neighbor.c 
 *         Radio neighborhood management 
 */ 
 
//TODO LINK_QUALITY has been used to store rtmetric. Check if no better attribute 
 
#include <limits.h> 
#include <stdio.h> 
 
#include "contiki.h" 
#include "lib/memb.h" 
#include "lib/list.h" 
#include "net/rime/neighbor.h" 
#include "net/rime/ctimer.h" 
#include "net/rime/collect.h" 
#include "net/rime/rimestats.h"  
 
#if USE_4BWLE 
#include <string.h>  
#include "lib/random.h"  
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#include "dev/radio-sensor.h" 
#endif 
 
 
#define DEBUG 0 
#if DEBUG 
#include <stdio.h> 
#define PRINTF(...) printf("  NEIGHBOR DEBUG: " __VA_ARGS__) 
#else 
#define PRINTF(...) 
#endif 
 
#define MAX_NEIGHBORS 3 //WARD TODO changed from 8 
#define RTMETRIC_MAX COLLECT_MAX_DEPTH 
 
MEMB(neighbors_mem, struct neighbor, MAX_NEIGHBORS); 
LIST(neighbors_list); 
/*static struct neighbor neighbors[MAX_NEIGHBORS];*/ 
 
#if USE_4BWLE 
/* New */ 
// If the etx estimate is below this threshold 
// do not evict a link 
#define EVICT_ETX_THRESHOLD 55 
// if received sequence number is larger than the last sequence 
// number by this gap, we reinitialize the link 
#define MAX_PKT_GAP 10 
// number of beacons to wait before computing a new 
// BLQ (Beacon-driven Link Quality) 
#define BLQ_PKT_WINDOW 3 
// Scaling factor of the packet reception ratio (PRR) 
#define PRR_SCALE 255 
// if we don't know the link quality, we need to return a value so 
// large that it will not be used to form paths 
#define VERY_LARGE_ETX_VALUE 0xff 
// number of packets to wait before computing a new 
// DLQ (Data-driven Link Quality) 
#define DLQ_PKT_WINDOW 3 
// decay the link estimate using this alpha 
// high alpha -> old values have lot of influence 
#define ALPHA 9 
#define ALPHA_SCALE 10 
/* Basic beacon sending interval, this interval is augmented with random value */ 
#define BEACON_INTERVAL (6*CLOCK_SECOND) 
/* Number of bits in ID header field */ 
#define BEACON_PACKET_ID_BITS 4 
/* Number of bits in ID header field */ 
#define BEACON_PACKET_RTMETRIC_BITS 16 
/* White bit radio threshold */ //Cooja always returns 37 
#define RADIO_THRESHOLD 30 
#endif 
 
 
/* Local variable */ 
static struct ctimer t; 
/* max number of check rounds for a neighbor without updating. After this, 
 * neighbor will be removed */ 
static int max_time = 120; 
 
#if USE_4BWLE 
//beacon stuff 
//TODO dirty hack - should actually be part of a collection connection 
static struct ctimer print_t; 
static struct ctimer beacon_t; 
static struct broadcast_conn beacon_conn; 
static struct collect_conn *collection_conn; 
struct neighbor_callbacks { 
 /* Called when fetching the network layer rtmetric */ 
 uint16_t (* get_rtmetric)(struct collect_conn *tc); 
 void (* update_rtmetric)(struct collect_conn *tc); 
} ncb; 
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/* Function declarations */ 
static struct neighbor * find_random_neighbor(); 
static uint8_t shouldInsert(uint16_t nrtmetric); 
static void updateDETX(struct neighbor *n); 
static void updateETX(struct neighbor *n, uint16_t newEst); 
static void updateBETX(struct neighbor *n); 
static void process_beacon(struct neighbor *n, uint8_t seq); 
static void print_neighbor_table(void); 
static uint16_t convertPRR_to_ETX(uint8_t prr); 
static struct neighbor *try_adding_neighbor(rimeaddr_t *addr, 
  uint16_t nrtmetric); 
 
 
/* Define the attribute list for the beacon channel. */ 
static const struct rimebuf_attrlist beacon_attributes[] = 
   { 
     { RIMEBUF_ATTR_PACKET_ID, RIMEBUF_ATTR_BIT * BEACON_PACKET_ID_BITS}, \ 
     { RIMEBUF_ATTR_LINK_QUALITY, RIMEBUF_ATTR_BIT * BEACON_PACKET_RTMETRIC_BITS}, 
     BROADCAST_ATTRIBUTES 
     RIMEBUF_ATTR_LAST 
   }; 
#endif 
 
 
#if USE_4BWLE 
/*---------------------------------------------------------------------------*/ 
/* Called when we receive a beacon 
 * The sequence number will be extracted and evaluated to determine the inbound 
 * link quality.*/ 
// NEW 
static void beacon_received(struct broadcast_conn *c, rimeaddr_t *from) { 
 
 struct neighbor *n; 
 uint8_t seqno; 
 uint16_t rtmtr; 
 
 RIMESTATS_ADD(beac_rx); 
 
 seqno = rimebuf_attr(RIMEBUF_ATTR_PACKET_ID); 
 rtmtr = rimebuf_attr(RIMEBUF_ATTR_LINK_QUALITY); 
 PRINTF(" Beacon received from %d.%d. Sequence no = %.3d, rtmetric = %d\n", 
   from->u8[0], from->u8[1], seqno, rtmtr); 
 
 /* neighbor in table? */ 
 n = neighbor_find(from); 
 if (n != NULL) { 
  /* neighbor found in table, so updating*/ 
  n->rtmetric = rtmtr; 
  n->time = 0; 
  process_beacon(n, seqno); 
  ncb.update_rtmetric(collection_conn); // update own metric 
 } else { 
  PRINTF("Beacon received from a neighbor not yet in the neighbor table\n"); 
  /* neighbor not in table, try adding*/ 
  n = try_adding_neighbor(from, rtmtr); 
  if (n != NULL) { 
   /* neighbor added, now update */ 
   n->rtmetric = rtmtr; 
   process_beacon(n, seqno); 
   ncb.update_rtmetric(collection_conn); //  update own metric 
  } else { 
   /* neighbor NOT added */ 
   PRINTF("Beacon neighbor could not be added\n"); 
  } 
 } 
} 
/*---------------------------------------------------------------------------*/ 
static const struct broadcast_callbacks beacon_cb = {beacon_received}; 
/*---------------------------------------------------------------------------*/ 
/* Broadcasts a beacon */ 
// NEW 
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static void send_beacon() { 
 static int seqno = 0; 
 static uint16_t my_rtmetric = 0; 
 seqno = (seqno + 1) % (1 << BEACON_PACKET_ID_BITS); 
 if (ncb.get_rtmetric != NULL) { 
  my_rtmetric = ncb.get_rtmetric(collection_conn); 
 } else { 
  PRINTF("getrtmetric function is NULL \n"); 
 } 
 rimebuf_set_attr(RIMEBUF_ATTR_PACKET_ID, seqno); 
 rimebuf_set_attr(RIMEBUF_ATTR_LINK_QUALITY, my_rtmetric); 
 
 if(my_rtmetric == 0 && rimeaddr_node_addr.u8[0]!=1) { 
  PRINTF("My metric is zero !\n"); 
 } 
 RIMESTATS_ADD(beac_tx); 
 PRINTF("Sending beacon (seqno: %.3d, rtmetric: %u)\n", seqno, my_rtmetric); 
 broadcast_send(&beacon_conn); 
 
 print_neighbor_table(); 
} 
/*---------------------------------------------------------------------------*/ 
/* Periodically call beacon sending function  */ 
// NEW 
static void send_beacon_periodic() { 
 
 /* Send a beacon */ 
 send_beacon(); 
 
 /* Set up next send */ 
 /* The call interval is BEACON_INTERVAL +- 50% */ 
 clock_time_t interval; 
 interval = (random_rand() % BEACON_INTERVAL) + (BEACON_INTERVAL >> 1); 
 ctimer_set(&beacon_t, interval, send_beacon_periodic, NULL); 
} 
/*---------------------------------------------------------------------------*/ 
/* For debugging */ 
// NEW 
static void print_neighbor_table() { 
 
  int i = 0; 
 struct neighbor *n; 
 printf("   Neighbor table:\n"); 
  for (n = list_head(neighbors_list); n != NULL; n = n->next) { 
    printf("     Neighbor %i:     addr: %d.%d   Time: %3u   RTMTR:%3.2u   " 
   "B_RCV: %u   B_FAIL: %u   B_QLT:  %u   " 
   "D_TOTAL: %u  D_SUC: %u   ETX: %u\n", 
      i, 
      n->addr.u8[0], 
      n->addr.u8[1], 
      n->time, 
      n->rtmetric, 
      n->beac_rcvcnt, 
      n->beac_failcnt, 
      n->beac_inquality, 
      n->data_total, 
      n->data_success, 
      n->etx); 
  //Simple counter increment 
    i++; 
  } 
 
} 
/*---------------------------------------------------------------------------*/ 
/* For debugging */ 
// NEW 
void print_table_perdiodic() { 
  print_neighbor_table(); 
  ctimer_set(&print_t, 2*CLOCK_SECOND, print_table_perdiodic, NULL); 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
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void 
neighbor_set_ack_bit(struct brunicast_conn *c, rimeaddr_t *addr, 
  uint8_t acked) 
{ 
 
 PRINTF("linkestimator: received ack bit: %d\n", acked); 
 
 struct neighbor *n; 
 n = neighbor_find(addr); 
 
 if (n != NULL) { 
  if (acked == 1) { 
   n->data_success++; 
   n->time = 0; 
  } 
  n->data_total++; 
  if (n->data_total >= DLQ_PKT_WINDOW) { 
   updateDETX(n); 
  } 
 } 
 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
static uint8_t is_high_channel_quality() { 
 unsigned int threshold = RADIO_THRESHOLD; 
 unsigned int radiovalue = radio_sensor.value(RADIO_SENSOR_LAST_PACKET); 
 uint8_t high = radiovalue / threshold; 
 return (high); 
} 
/*---------------------------------------------------------------------------*/ 
// update data driven ETX 
// NEW 
static void updateDETX(struct neighbor *n) { 
 uint16_t estETX; 
 
 PRINTF("neighbor: updateDETX called\n"); 
 RIMESTATS_ADD(ETX_update_d); 
 
 if (n->data_success == 0) { 
  // if there were no successful packet transmission in the 
  // last window, our current estimate is the number of failed 
  // transmissions 
  estETX = (n->data_total) * NEIGHBOR_ETX_SCALE; 
 } else { 
  estETX = (NEIGHBOR_ETX_SCALE * n->data_total) / n->data_success; 
  n->data_success = 0; 
  n->data_total = 0; 
 } 
 updateETX(n, estETX); 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
static void process_beacon(struct neighbor *n, uint8_t seq) { 
 
 int packet_gap; // must be int -> because can be negative ! 
 
 PRINTF("neighbor: process_beacon called\n"); 
 
 if (n->beac_init_entry == 0) { 
  /* first sequence number for this link */ 
  n->beac_lastseq = seq; 
  n->beac_init_entry = 1; 
 } 
 
 packet_gap = seq - n->beac_lastseq; //wrap-around is handled below 
 n->beac_lastseq = seq; 
 n->beac_rcvcnt++; 
 
 if (packet_gap > 0) { 
  n->beac_failcnt += packet_gap - 1; 
 } 
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 if (packet_gap > MAX_PKT_GAP || packet_gap < 0) { //negative -> wrap around 
  n->beac_failcnt = 0; 
  n->beac_rcvcnt = 1; 
  n->beac_inquality = 0; 
 } 
 if (n->beac_rcvcnt >= BLQ_PKT_WINDOW) { 
  updateBETX(n); 
 } 
 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
/* Upate beacon driven ETX */ 
static void updateBETX(struct neighbor *n) { 
 
 RIMESTATS_ADD(ETX_update_b); 
 
 uint8_t total_pkt; 
 uint8_t prr; 
 uint8_t prr_scale = PRR_SCALE; //TODO dirty hack because of mspgcc bug 
 uint8_t alpha = ALPHA; //TODO dirty hack  because of mspgcc bug 
 uint8_t alpha_scale = ALPHA_SCALE; //TODO dirty hack because of mspgcc bug 
 
 PRINTF("neighbor: updateBETX called\n"); 
 
 total_pkt = n->beac_failcnt + n->beac_rcvcnt; 
 
 if (total_pkt == 0) { 
  PRINTF("Total packet count = zero, shouldn't happen!\n"); 
 } else { 
  //Compute EWMA-ed PRR (packet reception ratio) 
  prr = (prr_scale * n->beac_rcvcnt) / total_pkt; 
  if (n->beac_inquality == 0) { // i.e. first time it is updated 
   n->beac_inquality=prr; 
  } else { 
   n->beac_inquality = (alpha * n->beac_inquality + (alpha_scale - alpha) 
     * prr) / alpha_scale; 
  } 
  //Reset beacon counters 
  n->beac_rcvcnt = 0; 
  n->beac_failcnt = 0; 
 } 
 // Insert/combine in global etx estimate 
 updateETX(n, convertPRR_to_ETX(n->beac_inquality)); 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
/* Convert PRR (packet reception ratio) to ETX 
 * The PRR is scaled, the resulting ETX is also scaled 
 */ 
static uint16_t convertPRR_to_ETX(uint8_t prr) { 
  uint16_t etx; 
  uint8_t prr_scale = PRR_SCALE; //TODO dirty hack 
 PRINTF("neighbor: convertPRR_ETX called\n"); 
 
  if (prr > 0) { 
  //eetx = ETX_SCALE * (PRR_SCALE / prr) - ETX_SCALE; 
   etx = NEIGHBOR_ETX_SCALE * (prr_scale / prr); 
    if (etx > 255) { // i.e. we only return 8-bit value 
      etx = VERY_LARGE_ETX_VALUE; 
    } 
    PRINTF("neighbor: convertPRR_ETX  result:   etx = %d\n", etx); 
    return etx; 
  } else { 
   PRINTF("neighbor: convertPRR_ETX  result:  etx = %d\n", VERY_LARGE_ETX_VALUE); 
    return VERY_LARGE_ETX_VALUE; 
  } 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
// update the ETX estimator (EWMA, exponentially weighted moving average method) 
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// called when new beacon estimate is done 
// also called when new DETX estimate is done 
static void updateETX(struct neighbor *n, uint16_t newEst) { 
 
 RIMESTATS_ADD(ETX_update); 
 
 uint8_t alpha = ALPHA; //TODO dirty hack 
 uint8_t alpha_scale = ALPHA_SCALE; //TODO dirty hack 
     PRINTF("neighbor: updateETX called\n"); 
     n->etx = (alpha * n->etx + (alpha_scale - alpha) * newEst) / alpha_scale; 
     PRINTF("neighbor: updateETX result:  etx = %d\n", n->etx); 
} 
/*---------------------------------------------------------------------------*/ 
//WARD 
static void init_neighbor(struct neighbor *n) { 
 //n->next; 
 n->time = 0; 
 //n->addr; 
 n->rtmetric = RTMETRIC_MAX; 
 n->beac_lastseq = 0; 
 n->beac_rcvcnt = 0; 
 n->beac_failcnt = 0; 
 n->beac_init_entry = 0; 
 //n->beac_inage; 
 n->beac_inquality = 0; // 0 also indicates pristine state (important for EWMA) 
 n->data_success = 0; 
 n->data_total = 0; 
 n->etx = 1 * NEIGHBOR_ETX_SCALE; 
} 
#endif 
/*---------------------------------------------------------------------------*/ 
/*  
 * A periodic (=every second) cleanup of the neighbor list. 
 * Each neighbor which has been in the list during 120 checks without any 
 * updates to its info, is removed from the list. 
 */ 
// CHANGED 
static void 
periodic(void *ptr) 
{ 
  struct neighbor *n, *next; 
  /* Go through all neighbors and remove old ones. */ 
  for (n = list_head(neighbors_list); n != NULL; n = next) { 
  next = NULL; 
  /*  for(i = 0; i < MAX_NEIGHBORS; ++i) {*/ 
  if (!rimeaddr_cmp(&n->addr, &rimeaddr_null) && n->time < max_time) { 
   n->time++; 
   if (n->time == max_time) { 
#if USE_4BWLE 
    init_neighbor(n); // not strictly necessary, but to reset everything 
#endif 
    PRINTF("%d.%d: removing old neighbor %d.%d\n", 
      rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1], 
      n->addr.u8[0], n->addr.u8[1]); 
    rimeaddr_copy(&n->addr, &rimeaddr_null); 
    next = n->next; 
    list_remove(neighbors_list, n); 
    memb_free(&neighbors_mem, n); 
   } 
  } 
  if (next == NULL) { 
   next = n->next; 
  } 
 } 
 
  /*  PRINTF("neighbor periodic\n");*/ 
  ctimer_set(&t, CLOCK_SECOND, periodic, NULL); 
} 
/*---------------------------------------------------------------------------*/ 
// IDENTICAL 
void 
neighbor_init(void) 
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{ 
 
  memb_init(&neighbors_mem); 
  list_init(neighbors_list); 
  ctimer_set(&t, CLOCK_SECOND, periodic, NULL); 
 
} 
/*---------------------------------------------------------------------------*/ 
#if USE_4BWLE 
// NEW 
void 
neighbor_start(struct collect_conn *c, uint16_t channel, 
  uint16_t(*get_rtmetric)(struct collect_conn *c), 
  void(*update_rtmetric)(struct collect_conn *c)) 
{ 
 radio_sensor.activate(); //for white bit 
 
 /* To get rtmetric from network layer */ 
 //TODO all a bit  dirty, but will do for now 
 collection_conn = c; 
 ncb.get_rtmetric = get_rtmetric; 
 ncb.update_rtmetric = update_rtmetric; 
 
 /* Beacon initialization */ 
 broadcast_open(&beacon_conn, channel, &beacon_cb); 
 channel_set_attributes(channel, beacon_attributes); 
 send_beacon_periodic(); 
 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
void neighbor_close() { 
 broadcast_close(&beacon_conn); 
 ctimer_stop(&beacon_t); 
 ctimer_stop(&print_t); 
} 
/*---------------------------------------------------------------------------*/ 
#endif 
 
// IDENTICAL 
struct neighbor * 
neighbor_find(rimeaddr_t *addr) 
{ 
  struct neighbor *n; 
  for(n = list_head(neighbors_list); n != NULL; n = n->next) { 
    if(rimeaddr_cmp(&n->addr, addr)) { 
      return n; 
    } 
  } 
  return NULL; 
} 
 
#if !USE_4BWLE 
/*---------------------------------------------------------------------------*/ 
// IDENTICAL 
void 
neighbor_update(struct neighbor *n, uint8_t rtmetric) 
{ 
  if(n != NULL) { 
    n->rtmetric = rtmetric; 
    n->time = 0; 
  } 
} 
/*---------------------------------------------------------------------------*/ 
// IDENTICAL 
void 
neighbor_timedout_etx(struct neighbor *n, uint8_t etx) 
{ 
  if(n != NULL) { 
    n->etxs[n->etxptr] += etx; 
    n->etxptr = (n->etxptr + 1) % NEIGHBOR_NUM_ETXS; 
  } 
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} 
/*---------------------------------------------------------------------------*/ 
// IDENTICAL 
void 
neighbor_update_etx(struct neighbor *n, uint8_t etx) 
{ 
  if(n != NULL) { 
    n->etxs[n->etxptr] = etx; 
    n->etxptr = (n->etxptr + 1) % NEIGHBOR_NUM_ETXS; 
    n->time = 0; 
  } 
} 
/*---------------------------------------------------------------------------*/ 
#endif 
 
/* Return the ETX of the specified neighbour (scaled) */ 
// CHANGED 
uint16_t 
neighbor_etx(struct neighbor *n) 
{ 
#if USE_4BWLE 
 return n->etx; 
#else 
     int i, etx; 
 
     etx = 0; 
     for(i = 0; i < NEIGHBOR_NUM_ETXS; ++i) { 
          etx += n->etxs[i]; 
     } 
     return NEIGHBOR_ETX_SCALE * etx / NEIGHBOR_NUM_ETXS; 
#endif 
} 
 
#if !USE_4BWLE 
/*---------------------------------------------------------------------------*/ 
// IDENTICAL 
void 
neighbor_add(rimeaddr_t *addr, uint8_t nrtmetric, uint8_t netx) 
{ 
  uint16_t rtmetric; 
  uint16_t etx; 
  struct neighbor *n, *max; 
  int i; 
 
  PRINTF("neighbor_add: adding %d.%d\n", addr->u8[0], addr->u8[1]); 
 
  /* Check if the neighbor is already on the list. */ 
  for(n = list_head(neighbors_list); n != NULL; n = n->next) { 
    if(rimeaddr_cmp(&n->addr, &rimeaddr_null) || 
       rimeaddr_cmp(&n->addr, addr)) { 
      PRINTF("neighbor_add: already on list %d.%d\n", addr->u8[0], addr->u8[1]); 
      break; 
    } 
  } 
 
  /* If the neighbor was not on the list, we try to allocate memory 
     for it. */ 
  if(n == NULL) { 
    PRINTF("neighbor_add: not on list, allocating %d.%d\n", addr->u8[0],  
           addr->u8[1]); 
    n = memb_alloc(&neighbors_mem); 
    if(n != NULL) { 
      list_add(neighbors_list, n); 
    } 
  } 
 
  /* If we could not allocate memory, we try to recycle an old 
  neighbor */ 
 if (n == NULL) { 
  PRINTF("neighbor_add: not on list, not allocated, recycling %d.%d\n",  
                 addr->u8[0], addr->u8[1]); 
  /* Find the first unused entry or the used entry with the highest 



82  8 - Appendix 

   rtmetric and highest etx. */ 
  rtmetric = 0; 
  etx = 0; 
  max = NULL; 
 
  for (n = list_head(neighbors_list); n != NULL; n = n->next) { 
   if (!rimeaddr_cmp(&n->addr, &rimeaddr_null)) { 
    if (n->rtmetric > rtmetric) { 
     rtmetric = n->rtmetric; 
     etx = neighbor_etx(n); 
     max = n; 
    } else if (n->rtmetric == rtmetric) { 
     if (neighbor_etx(n) > etx) { 
      rtmetric = n->rtmetric; 
      etx = neighbor_etx(n); 
      max = n; 
     } 
    } 
   } 
  } 
  n = max; 
 } 
 
  /*  PRINTF("%d: adding neighbor %d with rtmetric %d, signal %d at %d\n", 
      node_id, neighbors[n].nodeid, rtmetric, signal, n);*/ 
  if(n != NULL) { 
    n->time = 0; 
    rimeaddr_copy(&n->addr, addr); 
    n->rtmetric = nrtmetric; 
    for(i = 0; i < NEIGHBOR_NUM_ETXS; ++i) { 
      n->etxs[i] = netx; 
    } 
    n->etxptr = 0; 
  } 
} 
#endif 
 
#if USE_4BWLE 
/*---------------------------------------------------------------------------*/ 
// NEW 
/* Return the neighbor with the worst etx value, provided that it is greater 
 * than the given threshold 
 */ 
static struct neighbor * 
find_worst_neighbor(uint16_t etx_threshold) 
{ 
 uint16_t etx; 
 struct neighbor *n, *max; 
 
 PRINTF("neighbor: finding worst neighbor\n"); 
 
 etx = 0; 
 max = NULL; 
 
 for (n = list_head(neighbors_list); n != NULL; n = n->next) { 
  if (!rimeaddr_cmp(&n->addr, &rimeaddr_null)) { 
   if (neighbor_etx(n) > etx) { 
    etx = neighbor_etx(n); 
    max = n; 
   } 
  } 
 } 
 if (etx > etx_threshold) { 
  return max; 
 } else { 
  return NULL; 
 } 
} 
/*---------------------------------------------------------------------------*/ 
/* The link will be recommended for insertion if it is better* than some 
 * link in the routing table that is not our parent. 
*/ 
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// NEW 
static uint8_t 
shouldInsert(uint16_t nrtmetric) 
{ 
 
  struct neighbor *n, *parent; 
 parent = neighbor_best(); /* we assume current parent is current best one */ 
 
 for (n = list_head(neighbors_list); n != NULL; n = n->next) { 
  if (!rimeaddr_cmp(&n->addr, &rimeaddr_null) && 
    !rimeaddr_cmp(&n->addr, &parent->addr)) { // don't evict parent 
   if (nrtmetric < n->rtmetric) { 
    return 1; //we found a better one, so recommend insertion 
   } 
  } 
 } 
 return 0; 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
static struct neighbor * 
find_random_neighbor() { 
 PRINTF("neighbor: finding random neighbor\n"); 
 int cnt; 
 struct neighbor *n; 
 n = NULL; 
 cnt = neighbor_num(); 
 if (cnt != 0) { 
  n = neighbor_get(random_rand() % cnt); 
 } 
 return n; 
} 
/*---------------------------------------------------------------------------*/ 
// NEW 
static struct neighbor * 
try_adding_neighbor(rimeaddr_t *addr, uint16_t nrtmetric) 
{ 
 struct neighbor *n; 
 
 PRINTF("neighbor_add: adding %d.%d\n", addr->u8[0], addr->u8[1]); 
 
 /* Check if the neighbor is already on the list. */ 
 n = neighbor_find(addr); 
 
 /* If the neighbor was not on the list, we try to allocate memory 
  for it. */ 
 if (n == NULL) { 
  PRINTF("neighbor_add: not on list, allocating %d.%d\n",  
                 addr->u8[0], addr->u8[1]); 
  n = memb_alloc(&neighbors_mem); 
  if (n != NULL) { 
   list_add(neighbors_list, n); 
  } 
 } 
 
 /* If we could not allocate memory, we try to recycle an old 
  neighbor */ 
 if (n == NULL) { 
  PRINTF("neighbor_add: not on list, not allocated, recycling %d.%d\n",  
                 addr->u8[0], addr->u8[1]); 
  /* Find the first unused entry or the used entry with the highest 
           * etx that is above a certain theshold */ 
  n = find_worst_neighbor(EVICT_ETX_THRESHOLD); 
 } 
 
 /* If we still could not allocate memory: 
  * If the white bit is set, lets ask the router if the path through this link 
  * is better than at least one known path - if so lets insert this link into 
  * the table. */ 
 if (n == NULL) { 
  PRINTF("White bit selection mechanism\n"); 
  if (is_high_channel_quality() == 1) { 
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   if (shouldInsert(nrtmetric) == 1) { 
    n = find_random_neighbor(); 
    PRINTF("Neighbor %d.%d will be evicted.\n",  
                           n->addr.u8[0], n->addr.u8[1]); 
   } else { 
    PRINTF("The upper layer advised not to insert the neighbor\n"); 
   } 
  } else { 
   PRINTF("Channel quality not high enough to consider insertion\n"); 
  } 
 } 
 
 /* If we found an entry, update it */ 
 if (n != NULL) { 
  n->time = 0; 
  rimeaddr_copy(&n->addr, addr); 
  init_neighbor(n); 
  n->rtmetric = nrtmetric; 
 } 
 
 return n; 
} 
#else 
/*---------------------------------------------------------------------------*/ 
// IDENTICAL 
void 
neighbor_remove(rimeaddr_t *addr) 
{ 
  struct neighbor *n; 
 
  for(n = list_head(neighbors_list); n != NULL; n = n->next) { 
    if(rimeaddr_cmp(&n->addr, addr)) { 
      PRINTF("%d: removing %d\n", rimeaddr_node_addr.u8[0], addr->u8[0]); 
      rimeaddr_copy(&n->addr, &rimeaddr_null); 
      n->rtmetric = RTMETRIC_MAX; 
      list_remove(neighbors_list, n); 
      memb_free(&neighbors_mem, n); 
      return; 
    } 
  } 
} 
#endif 
/*---------------------------------------------------------------------------*/ 
/*  
 * Return the neighbor with the lowest combined rtmetric & history-averaged 
 * etx value 
 */ 
// IDENTICAL 
struct neighbor * 
neighbor_best(void) 
{ 
  int found; 
  /*  int lowest, best;*/ 
  struct neighbor *n, *best; 
  uint16_t rtmetric; 
 
  rtmetric = RTMETRIC_MAX; 
  best = NULL; 
  found = 0; 
 
  /*  PRINTF("%d: ", node_id);*/ 
 
  /* Find the lowest rtmetric. */ 
  for(n = list_head(neighbors_list); n != NULL; n = n->next) { 
    if(!rimeaddr_cmp(&n->addr, &rimeaddr_null) && 
       rtmetric > n->rtmetric + neighbor_etx(n)) { 
      rtmetric = n->rtmetric + neighbor_etx(n); 
      best = n; 
    } 
  } 
 
  return best; 
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} 
/*---------------------------------------------------------------------------*/ 
/*  
 * Set the time to keep neighbors in the neighbor table. 
 * Time = amount of periods of periodic table cleanup 
 * (currently set to:  120 x 1 sec = 120 seconds) 
 */ 
// IDENTICAL 
void 
neighbor_set_lifetime(int seconds) 
{ 
  max_time = seconds; 
} 
/*---------------------------------------------------------------------------*/ 
/*  
 * Return the number of neighbors in the table 
 */ 
// IDENTICAL 
int 
neighbor_num(void) 
{ 
  PRINTF("neighbor_num %d\n", list_length(neighbors_list)); 
  return list_length(neighbors_list); 
} 
/*---------------------------------------------------------------------------*/ 
/*  
 * Return the num-th neighbor in the table 
 */ 
// IDENTICAL 
struct neighbor * 
neighbor_get(int num) 
{ 
  int i; 
  struct neighbor *n; 
 
  PRINTF("neighbor_get %d\n", num); 
 
  i = 0; 
  for(n = list_head(neighbors_list); n != NULL; n = n->next) { 
    if(i == num) { 
      PRINTF("neighbor_get found %d.%d\n", n->addr.u8[0], n->addr.u8[1]); 
      return n; 
    } 
    i++; 
  } 
  return NULL; 
} 
/*---------------------------------------------------------------------------*/ 
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8.5 Appendix E – Reported bugs 

The following is a list of bugs that have been discovered and subsequently 
reported to the Contiki developer mailing list: 

• Developer mailing list, December 6, 2008: MIN/MAX bug in 
core/net/rime/polite.c and ipolite.c. The bug was fixed upon a second report 
to the mailing list. 

• Developer mailing list, March 15, 2009:  the runicast-stunicast bug where 
the number of transmissions is incorrectly handled (see § 3.4). 

• Developer mailing list, April 7, 2009: suggestion for some minor coding 
enhancements (not bugs) to core/net/rime/collect.c. These were 
incorporated in the CVS in version 1.24 of collect.c. 

• Developer mailing list, April 27, 2009: reported a bug in the msp430 
compiler concerning integral promotion. 

• Developer mailing list, April 29, 2009: reported and suggested a fix for a 
forwarding flag bug in core/net/rime/collect.c. The bug was confirmed, but 
was countered the same day by the implementation of a packet queue for 
collect.c. 


